Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670238

RESUMEN

(1) Background: Postural sway is frequently used to quantify human postural control, balance, injury, and neurological deficits. However, there is considerably less research investigating the value of the metric in horses. Much of the existing equine postural sway research uses force or pressure plates to examine the centre of pressure, inferring change at the centre of mass (COM). This study looks at the inverse, using an inertial measurement unit (IMU) on the withers to investigate change at the COM, exploring the potential of postural sway evaluation in the applied domain. (2) Methods: The lipopolysaccharide model was used to induce transient bilateral lameness in seven equines. Horses were monitored intermittently by a withers fixed IMU over seven days. (3) Results: There was a significant effect of time on total protein, carpal circumference, and white blood cell count in the horses, indicating the presence of, and recovery from, inflammation. There was a greater amplitude of displacement in the craniocaudal (CC) versus the mediolateral (ML) direction. A significant difference was observed in the amplitude of displacement in the ML direction between 4-12 h and 168 h. (4) Conclusions: The significant reduction in ML displacement during the acute inflammation period alongside greater overall CC displacement may be a compensatory behaviour for bilateral lameness.


Asunto(s)
Caballos , Cojera Animal/diagnóstico , Equilibrio Postural , Animales , Estudios de Factibilidad , Cojera Animal/inducido químicamente , Presión , Torso
2.
Connect Tissue Res ; 60(2): 95-106, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29560747

RESUMEN

AIM: The horse joint, due to its similarity with the human joint, is the ultimate model for translational articular cartilage repair studies. This study was designed to determine the critical size of cartilage defects in the equine carpus and serve as a benchmark for the evaluation of new cartilage treatment options. MATERIAL AND METHODS: Circular full-thickness cartilage defects with a diameter of 2, 4, and 8 mm were created in the left middle carpal joint and similar osteochondral (3.5 mm in depth) defects in the right middle carpal joint of 5 horses. Spontaneously formed repair tissue was examined macroscopically, with MR and µCT imaging, polarized light microscopy, standard histology, and immunohistochemistry at 12 months. RESULTS: Filling of 2 mm chondral defects was good (77.8 ± 8.5%), but proteoglycan depletion was evident in Safranin-O staining and gadolinium-enhanced MRI (T1Gd). Larger chondral defects showed poor filling (50.6 ± 2.7% in 4 mm and 31.9 ± 7.3% in 8 mm defects). Lesion filling in 2, 4, and 8 mm osteochondral defects was 82.3 ± 3.0%, 68.0 ± 4.6% and 70.8 ± 15.4%, respectively. Type II collagen staining was seen in 9/15 osteochondral defects but only in 1/15 chondral defects. Subchondral bone pathologies were evident in 14/15 osteochondral samples but only in 5/15 chondral samples. Although osteochondral lesions showed better neotissue quality than chondral lesions, the overall repair was deemed unsatisfactory because of the subchondral bone pathologies. CONCLUSION: We recommend classifying 4 mm as critical osteochondral lesion size and 2 mm as critical chondral lesion size for cartilage repair research in the equine carpal joint model.


Asunto(s)
Articulaciones del Carpo/patología , Cartílago Articular/patología , Caballos/anatomía & histología , Animales , Articulaciones del Carpo/diagnóstico por imagen , Cartílago Articular/diagnóstico por imagen , Imagen por Resonancia Magnética , Microscopía de Polarización , Factores de Tiempo , Cicatrización de Heridas , Microtomografía por Rayos X
3.
Cytotherapy ; 18(8): 957-969, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27288309

RESUMEN

BACKGROUND AIMS: In regenerative medicine, the use of allogeneic cells could enable the development of "off the shelf" therapies for patients with critical size bone defects, reducing limitations observed with the use of autologous cells, such as cost and time to treat the patient. The idea of the use of allogeneic bone marrow mesenchymal stromal cells (BMSCs) has been of interest in tissue engineering studies. However, little is known about the properties of these cells upon differentiation. Chondrogenically differentiated BMSCs have already been shown to form endochondral bone in immunodeficient and immunocompetent animals. The success of this bone formation is dependent on the host's endogenous cells. This study investigates the interactions between allogeneic chondrogenically differentiated human bone marrow mesenchymal stromal cell (hBMSC) pellets and T lymphocytes in vitro. METHODS: Non-chondrogenic (-transforming growth factor (TGF)ß3) and chondrogenic hBMSC (+TGFß3) pellets were directly co-cultured with unstimulated and CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) for 7 days. hBMSC pellets from the co-culture were either fixed for histological analysis or quantitative real time polymerase chain reaction (qRT-PCR). PBMCs were harvested for flow cytometry. RESULTS: Flow cytometic analysis revealed that chondrogenically differentiated hBMSC pellets did not alter the number or proliferation of CD4+, CD8+ T cells or FoxP3+ T regulatory cells (CD4+CD25+CD127-). Chondrogenic hBMSC pellets did not induce immunogenic responses in unstimulated PBMCs. Infiltrating CD3 T cells were found in the matrix of hBMSC pellets. Furthermore, qRT-PCR demonstrated low levels of T-cell activation genes (CD25, CD69, PRF1 and GZMB) in addition to low gene expression levels of the pro-inflammatory gene tumor necrosis factor alpha (TNFα) in chondrogenically differentiated hBMSC pellets cultured with unstimulated PBMCs in comparison with non-chondrogenic hBMSC pellets. CONCLUSIONS: Collectively the results of this study demonstrate that allogeneic chondrogenically differentiated hBMSC pellets are non-immunogenic and do not induce the activation of destructive T-cell responses in vitro.


Asunto(s)
Diferenciación Celular , Condrocitos/fisiología , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/fisiología , Linfocitos T/inmunología , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/fisiología , Células Cultivadas , Condrogénesis/fisiología , Técnicas de Cocultivo , Humanos , Inmunomodulación/fisiología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/fisiología , Activación de Linfocitos , Masculino , Células Madre Mesenquimatosas/citología , Osteogénesis , Trasplante Homólogo
4.
PLoS Genet ; 9(1): e1003211, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349635

RESUMEN

Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an F(ST)-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.


Asunto(s)
Estudio de Asociación del Genoma Completo , Caballos/genética , Miostatina/genética , Selección Genética , Animales , Evolución Biológica , Cruzamiento , Genotipo , Haplotipos , Fenotipo , Polimorfismo de Nucleótido Simple
5.
Vet Surg ; 44(6): 723-30, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25998193

RESUMEN

OBJECTIVES: To evaluate knot security for 3 knot types created in 3 commonly used 5 metric suture materials incubated in physiological and pathological fluids. STUDY DESIGN: In vitro mechanical study. SAMPLE POPULATION: Knotted suture loops (n = 5/group). METHODS: Loops of 3 different suture materials (glycolide/lactide copolymer; polyglactin 910; polydioxanone) were created around a 20 mm rod using 3 knot types (square [SQ], surgeon's [SK], and triple knot [TK]) and were tested to failure in distraction (6 mm/min) after tying (day 0) and after being incubated for 14 and 28 days in phosphate buffered saline (PBS) or inflamed peritoneal fluid. Failure load (N) and mode were recorded and compared. RESULTS: For polydioxanone, significant differences in force to knot failure were found between SQ and SK/TK but not between SK and TK. The force required to break all constructs increased after incubation in phosphate buffered saline (PBS). With glycolide/lactide copolymer no differences in force to knot failure were observed. With polyglactin 910, a significant difference between SQ and TK was observed, which was not seen between the other knot types. Incubation in inflamed peritoneal fluid caused a larger and more rapid decrease in force required to cause knot failure than incubation in PBS. CONCLUSIONS: Mechanical properties of suture materials have significant effects on knot security. For polydioxanone, SQ is insufficient to create a secure knot. Additional wraps above a SK confer extra stability in some materials, but this increase may not be clinically relevant or justifiable. Glycolide/lactide copolymer had excellent knot security.


Asunto(s)
Análisis de Falla de Equipo/normas , Polidioxanona/uso terapéutico , Poliglactina 910/uso terapéutico , Técnicas de Sutura/veterinaria , Animales , Líquido Ascítico/patología , Dioxanos/uso terapéutico , Análisis de Falla de Equipo/métodos , Caballos , Fosfatos , Cloruro de Sodio , Resistencia a la Tracción , Factores de Tiempo
6.
Biomaterials ; 306: 122471, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377846

RESUMEN

Allogeneic stem-cell based regenerative medicine is a promising approach for bone defect repair. The use of chondrogenically differentiated human marrow stromal cells (MSCs) has been shown to lead to bone formation by endochondral ossification in immunodeficient pre-clinical models. However, an insight into the interactions between the allogeneic immune system and the human MSC-derived bone grafts has not been fully achieved yet. The choice of a potent source of MSCs isolated from pediatric donors with consistent differentiation and high proliferation abilities, as well as low immunogenicity, could increase the chance of success for bone allografts. In this study, we employed an immunodeficient animal model humanised with allogeneic immune cells to study the immune responses towards chondrogenically differentiated human pediatric MSCs (ch-pMSCs). We show that ch-differentiated pMSCs remained non-immunogenic to allogeneic CD4 and CD8 T cells in an in vitro co-culture model. After subcutaneous implantation in mice, ch-pMSC-derived grafts were able to initiate bone mineralisation in the presence of an allogeneic immune system for 3 weeks without the onset of immune responses. Re-exposing the splenocytes of the humanised animals to pMSCs did not trigger further T cell proliferation, suggesting an absence of secondary immune responses. Moreover, ch-pMSCs generated mature bone after 8 weeks of implantation that persisted for up to 6 more weeks in the presence of an allogeneic immune system. These data collectively show that human allogeneic chondrogenically differentiated pediatric MSCs might be a safe and potent option for bone defect repair in the tissue engineering and regenerative medicine setting.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Niño , Osteogénesis , Médula Ósea , Células del Estroma , Diferenciación Celular , Células de la Médula Ósea , Células Cultivadas
7.
Mater Today Bio ; 25: 100959, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38327976

RESUMEN

Osteochondral defect repair with a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold has demonstrated good clinical results. However, subchondral bone repair remained suboptimal, potentially leading to damage to the regenerated overlying neocartilage. This study aimed to improve the bone repair potential of this scaffold by incorporating newly developed strontium (Sr) ion enriched amorphous calcium phosphate (Sr-ACP) granules (100-150 µm). Sr concentration of Sr-ACP was determined with ICP-MS at 2.49 ± 0.04 wt%. Then 30 wt% ACP or Sr-ACP granules were integrated into the scaffold prototypes. The ACP or Sr-ACP granules were well embedded and distributed in the collagen matrix demonstrated by micro-CT and scanning electron microscopy/energy dispersive x-ray spectrometry. Good cytocompatibility of ACP/Sr-ACP granules and ACP/Sr-ACP enriched scaffolds was confirmed with in vitro cytotoxicity assays. An overall promising early tissue response and good biocompatibility of ACP and Sr-ACP enriched scaffolds were demonstrated in a subcutaneous mouse model. In a goat osteochondral defect model, significantly more bone was observed at 6 months with the treatment of Sr-ACP enriched scaffolds compared to scaffold-only, in particular in the weight-bearing femoral condyle subchondral bone defect. Overall, the incorporation of osteogenic Sr-ACP granules in Col/Col-Mg-HAp scaffolds showed to be a feasible and promising strategy to improve subchondral bone repair.

8.
Radiology ; 269(1): 113-21, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23674789

RESUMEN

PURPOSE: To evaluate the status of articular cartilage and bone in an equine model of spontaneous repair by using the sweep imaging with Fourier transform (SWIFT) magnetic resonance (MR) imaging technique. MATERIALS AND METHODS: Experiments were approved by the Utrecht University Animal Ethics Committee. Six-millimeter-diameter chondral (n = 5) and osteochondral (n = 5, 3-4 mm deep into subchondral bone) defects were created in the intercarpal joints of seven 2-year-old horses and examined with SWIFT at 9.4 T after spontaneous healing for 12 months. Conventional T2 maps and gradient-echo images were obtained for comparison, and histologic assessment of cartilage and micro-computed tomography (CT) of bone were performed for reference. Signal-to-noise ratio (SNR) analysis was performed, and a radiologist evaluated the MR images. Structural bone parameters were derived from SWIFT and micro-CT datasets. Significance of differences was investigated with the Wilcoxon signed rank test and Pearson correlation analysis. RESULTS: SWIFT was able to depict the different outcomes of spontaneous healing of focal chondral versus osteochondral defects. SWIFT produced constant signal intensity throughout cartilage, whereas T2 mapping showed elevated T2 values (P = .06) in repair tissue (mean T2 in superficial region of interest in an osteochondral lesion = 50.0 msec ± 10.2) in comparison to adjacent intact cartilage (mean T2 = 32.7 msec ± 4.2). The relative SNR in the subchondral plate with SWIFT (0.91) was more than four times higher than that with conventional fast spin-echo (0.12) and gradient-echo (0.19) MR imaging. The correlation between bone volume-to-tissue volume fractions determined with SWIFT and micro-CT was significant (r = 0.83, P < .01). CONCLUSION: SWIFT enabled assessment of spontaneous osteochondral repair in an equine model.


Asunto(s)
Curación de Fractura , Fracturas Óseas/patología , Fracturas del Cartílago/patología , Interpretación de Imagen Asistida por Computador/métodos , Articulaciones/lesiones , Articulaciones/patología , Imagen por Resonancia Magnética/métodos , Algoritmos , Animales , Análisis de Fourier , Caballos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
JOR Spine ; 6(3): e1279, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37780829

RESUMEN

Background: A significant hurdle for potential cell-based therapies is the subsequent survival and regenerative capacity of implanted cells. While many exciting developments have demonstrated promise preclinically, cell-based therapies for intervertebral disc (IVD) degeneration fail to translate equivalent clinical efficacy. Aims: This work aims to ascertain the clinical relevance of both a small and large animal model by experimentally investigating and comparing these animal models to human from the perspective of anatomical scale and their cellular metabolic and regenerative potential. Materials and Methods: First, this work experimentally investigated species-specific geometrical scale, native cell density, nutrient metabolism, and matrix synthesis rates for rat, goat, and human disc cells in a 3D microspheroid configuration. Second, these parameters were employed in silico to elucidate species-specific nutrient microenvironments and predict differences in temporal regeneration between animal models. Results: This work presents in silico models which correlate favorably to preclinical literature in terms of the capabilities of animal regeneration and predict that compromised nutrition is not a significant challenge in small animal discs. On the contrary, it highlights a very fine clinical balance between an adequate cell dose for sufficient repair, through de novo matrix deposition, without exacerbating the human microenvironmental niche. Discussion: Overall, this work aims to provide a path towards understanding the effect of cell injection number on the nutrient microenvironment and the "time to regeneration" between preclinical animal models and the large human IVD. While these findings help to explain failed translation of promising preclinical data and the limited results emerging from clinical trials at present, they also enable the research field and clinicians to manage expectations on cell-based regeneration. Conclusion: Ultimately, this work provides a platform to inform the design of clinical trials, and as computing power and software capabilities increase in the future, it is conceivable that generation of patient-specific models could be used for patient assessment, as well as pre- and intraoperative planning.

10.
Animals (Basel) ; 13(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37893914

RESUMEN

This study investigates repeated low-dose lipopolysaccharide (LPS) injections in equine joints as a model for recurrent joint inflammation and its impact on animal welfare. Joint inflammation was induced in eight horses by injecting 0.25 ng of LPS three times at two-week intervals. Welfare scores and clinical parameters were recorded at baseline and over 168 h post-injection. Serial synoviocentesis was performed for the analysis of a panel of synovial fluid biomarkers of inflammation and cartilage turnover. Clinical parameters and a final synoviocentesis were also performed eight weeks after the last sampling point to assess the recovery of normal joint homeostasis. Statistical methods were used to compare the magnitude of response to each of the 3 LPS inductions and to compare the baseline and final measurements. Each LPS injection produced consistent clinical and biomarker responses, with minimal changes in welfare scores. General matrix metalloproteinase (MMP) activity and joint circumference showed greater response to the second LPS induction, but response to the third was comparable to the first. Gylcosaminoglycans (GAG) levels showed a significantly decreased response with each induction, while collagen-cleavage neoepitope of type II collagen (C2C) and carboxypropetide of type II collagen epitope (CPII) showed quicker responses to the second and third inductions. All parameters were comparable to baseline values at the final timepoint. In conclusion, a consistent, reliable intra-articular inflammatory response can be achieved with repeated injections of 0.25 ng LPS, with minimal impact on animal welfare, suggesting potential as a refined translational model of recurrent joint inflammation.

11.
J Funct Biomater ; 14(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36826910

RESUMEN

Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by adsorbing bone morphogenetic protein 2 (BMP-2) and/or platelet-derived growth factor-BB (PDGF-BB) onto said scaffold. The in vitro release kinetics of BMP-2/PDGF-BB demonstrated that PDGF-BB was burst released from the collagen-only layer, whereas BMP-2 was largely retained in both layers. Cell ingrowth was enhanced by BMP-2/PDFG-BB in a bovine osteochondral defect ex vivo model. In an in vivo semi-orthotopic athymic mouse model, adding BMP-2 or PDGF-BB increased tissue repair after four weeks. After eight weeks, most defects were filled with bone tissue. To further investigate the promising effect of BMP-2, a caprine bilateral stifle osteochondral defect model was used where defects were created in weight-bearing femoral condyle and non-weight-bearing trochlear groove locations. After six months, the adsorption of BMP-2 resulted in significantly less bone repair compared with scaffold-only in the femoral condyle defects and a trend to more bone repair in the trochlear groove. Overall, the adsorption of BMP-2 onto a Col/Col-Mg-HAp scaffold reduced bone formation in weight-bearing osteochondral defects, but not in non-weight-bearing osteochondral defects.

12.
Biol Sex Differ ; 13(1): 44, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35908065

RESUMEN

Tendinopathies are common overuse disorders that arise both in athletes and the general population. Available tendon treatments are used both for women and men without distinction. However, the existence of a sex-based difference in tendon biology is widely demonstrated. Since basic research represents the foundation for treatment development, an equal female-male representation should be pursued in preclinical studies. This systematic review quantified the current evidence by analyzing 150 studies on 8231 animals. Preclinical studies largely neglected the importance of sex, none analyzed sex-based differences, and only 4% of the studies reported disaggregated data suitable for the analysis of treatment results in males and females. There is an alarming female under-representation, in particular in the field of injective therapies. Despite the growing awareness on the importance of investigating treatments in both males and females, the investigated field proved resistant from properly designing studies including both sexes, and the lack of sex-representation remains critical.


Asunto(s)
Sexismo , Tendinopatía , Animales , Femenino , Humanos , Masculino , Tendinopatía/epidemiología , Tendinopatía/terapia , Tendones
13.
Mater Today Bio ; 16: 100343, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35865410

RESUMEN

Articular cartilage defects fail to heal spontaneously, typically progressing to osteoarthritis. Bone marrow stimulation techniques such as microfracture (MFX) are the current surgical standard of care; however MFX typically produces an inferior fibro-cartilaginous tissue which provides only temporary symptomatic relief. Here we implanted solubilised articular cartilage extracellular matrix (ECM) derived scaffolds into critically sized chondral defects in goats, securely anchoring these implants to the joint surface using a 3D-printed fixation device that overcame the need for sutures or glues. In vitro these ECM scaffolds were found to be inherently chondro-inductive, while in vivo they promoted superior articular cartilage regeneration compared to microfracture. In an attempt to further improve the quality of repair, we loaded these scaffolds with a known chemotactic factor, transforming growth factor (TGF)-ß3. In vivo such TGF-ß3 loaded scaffolds promoted superior articular cartilage regeneration. This study demonstrates that ECM derived biomaterials, either alone and particularly when combined with exogenous growth factors, can successfully treat articular cartilage defects in a clinically relevant large animal model.

14.
Acta Biomater ; 143: 266-281, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278686

RESUMEN

While some clinical advances in cartilage repair have occurred, osteochondral (OC) defect repair remains a significant challenge, with current scaffold-based approaches failing to recapitulate the complex, hierarchical structure of native articular cartilage (AC). To address this need, we fabricated bilayered extracellular matrix (ECM)-derived scaffolds with aligned pore architectures. By modifying the freeze-drying kinetics and controlling the direction of heat transfer during freezing, it was possible to produce anisotropic scaffolds with larger pores which supported homogenous cellular infiltration and improved sulfated glycosaminoglycan deposition. Neo-tissue organization in vitro could also be controlled by altering scaffold pore architecture, with collagen fibres aligning parallel to the long-axis of the pores within scaffolds containing aligned pore networks. Furthermore, we used in vitro and in vivo assays to demonstrate that AC and bone ECM derived scaffolds could preferentially direct the differentiation of mesenchymal stromal cells (MSCs) towards either a chondrogenic or osteogenic lineage respectively, enabling the development of bilayered ECM scaffolds capable of spatially supporting unique tissue phenotypes. Finally, we implanted these scaffolds into a large animal model of OC defect repair. After 6 months in vivo, scaffold implantation was found to improve cartilage matrix deposition, with collagen fibres preferentially aligning parallel to the long axis of the scaffold pores, resulting in a repair tissue that structurally and compositionally was more hyaline-like in nature. These results demonstrate how scaffold architecture and composition can be spatially modulated to direct the regeneration of complex interfaces such as the osteochondral unit, enabling their use as cell-free, off-the-shelf implants for joint regeneration. STATEMENT OF SIGNIFICANCE: The architecture of the extracellular matrix, while integral to tissue function, is often neglected in the design and evaluation of regenerative biomaterials. In this study we developed a bilayered scaffold for osteochondral defect repair consisting of tissue-specific extracellular matrix (ECM)-derived biomaterials to spatially direct stem/progenitor cell differentiation, with a tailored pore microarchitecture to promote the development of a repair tissue that recapitulates the hierarchical structure of native AC. The use of this bilayered scaffold resulted in improved tissue repair outcomes in a large animal model, specifically the ability to guide neo-tissue organization and therefore recapitulate key aspects of the zonal structure of native articular cartilage. These bilayer scaffolds have the potential to become a new therapeutic option for osteochondral defect repair.


Asunto(s)
Cartílago Articular , Andamios del Tejido , Animales , Materiales Biocompatibles/química , Condrogénesis , Colágeno , Matriz Extracelular , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
15.
Biomaterials ; 289: 121750, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084483

RESUMEN

Modular biofabrication strategies using microtissues or organoids as biological building blocks have great potential for engineering replacement tissues and organs at scale. Here we describe the development of a biofabrication strategy to engineer osteochondral tissues by spatially localising phenotypically distinct cartilage microtissues within an instructive 3D printed polymer framework. We first demonstrate that immature cartilage microtissues can spontaneously fuse to form homogeneous macrotissues, and that combining less cellular microtissues results in superior fusion and the generation of a more hyaline-like cartilage containing higher levels of sulphated glycosaminoglycans and type II collagen. Furthermore, temporally exposing developing microtissues to transforming growth factor-ß accelerates their volumetric growth and subsequent capacity to fuse into larger hyaline cartilage grafts. Next, 3D printed polymeric frameworks are used to further guide microtissue fusion and the subsequent self-organisation process, resulting in the development of a macroscale tissue with zonal collagen organisation analogous to the structure seen in native articular cartilage. To engineer osteochondral grafts, hypertrophic cartilage microtissues are engineered as bone precursor tissues and spatially localised below phenotypically stable cartilage microtissues. Implantation of these engineered grafts into critically-sized caprine osteochondral defects results in effective defect stabilisation and histologically supports the restoration of a more normal articular surface after 6 months in vivo. These findings support the use of such modular biofabrication strategies for biological joint resurfacing.


Asunto(s)
Cartílago Articular , Cabras , Animales , Colágeno , Colágeno Tipo II , Glicosaminoglicanos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Factores de Crecimiento Transformadores
16.
Front Vet Sci ; 9: 907616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812845

RESUMEN

Background: Allogenic mesenchymal stem cell (MSC) secretome is a novel intra-articular therapeutic that has shown promise in in vitro and small animal models and warrants further investigation. Objectives: To investigate if intra-articular allogenic MSC-secretome has anti-inflammatory effects using an equine model of joint inflammation. Study Design: Randomized positively and negatively controlled experimental study. Method: In phase 1, joint inflammation was induced bilaterally in radiocarpal joints of eight horses by injecting 0.25 ng lipopolysaccharide (LPS). After 2 h, the secretome of INFy and TNFα stimulated allogeneic equine MSCs was injected in one randomly assigned joint, while the contralateral joint was injected with medium (negative control). Clinical parameters (composite welfare scores, joint effusion, joint circumference) were recorded, and synovial fluid samples were analyzed for biomarkers (total protein, WBCC; eicosanoid mediators, CCL2; TNFα; MMP; GAGs; C2C; CPII) at fixed post-injection hours (PIH 0, 8, 24, 72, and 168 h). The effects of time and treatment on clinical and synovial fluid parameters and the presence of time-treatment interactions were evaluated. For phase 2, allogeneic MSC-secretome vs. allogeneic equine MSCs (positive control) was tested using a similar methodology. Results: In phase 1, the joint circumference was significantly (p < 0.05) lower in the MSC-secretome treated group compared to the medium control group at PIH 24, and significantly higher peak synovial GAG values were noted at PIH 24 (p < 0.001). In phase 2, no significant differences were noted between the treatment effects of MSC-secretome and MSCs. Main Limitations: This study is a controlled experimental study and therefore cannot fully reflect natural joint disease. In phase 2, two therapeutics are directly compared and there is no negative control. Conclusions: In this model of joint inflammation, intra-articular MSC-secretome injection had some clinical anti-inflammatory effects. An effect on cartilage metabolism, evident as a rise in GAG levels was also noted, although it is unclear whether this could be considered a beneficial or detrimental effect. When directly comparing MSC-secretome to MSCs in this model results were comparable, indicating that MSC-secretome could be a viable off-the-shelf alternative to MSC treatment.

17.
Biomater Biosyst ; 8: 100066, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36824377

RESUMEN

Cartilage has poor regenerative capacity and thus damage to the joint surfaces presents a major clinical challenge. Recent research has focussed on the development of tissue-engineered and cell-based approaches for the treatment of cartilage and osteochondral injuries, with current clinically available cell-based approaches including autologous chondrocyte implantation and matrix-assisted autologous chondrocyte implantation. However, these approaches have significant disadvantages due to the requirement for a two-stage surgical procedure and an in vitro chondrocyte expansion phase which increases logistical challenges, hospital times and costs. In this study, we hypothesized that seeding biomimetic tri-layered scaffolds, with proven regenerative potential, with chondrocyte/infrapatellar fat pad stromal cell co-cultures would improve their regenerative capacity compared to scaffolds implanted cell-free. Rapid cell isolation techniques, without the requirement for long term in vitro culture, were utilised to achieve co-cultures of chondrocytes and stromal cells and thus overcome the limitations of existing cell-based techniques. Cell-free and cell-seeded scaffolds were implanted in osteochondral defects, created within the femoral condyle and trochlear ridge, in a translational large animal goat model. While analysis showed trends towards delayed subchondral bone healing in the cell-seeded scaffold group, by the 12 month timepoint the cell-free and cell-seeded groups yield cartilage and bone tissue with comparable quality and quantity. The results of the study reinforce the potential of the biomimetic tri-layered scaffold to repair joint defects but failed to demonstrate a clear benefit from the addition of the CC/FPMSC co-culture to this scaffold. Taking into consideration the additional cost and complexity associated with the cell-seeded scaffold approach, this study demonstrates that the treatment of osteochondral defects using cell-free tri-layered scaffolds may represent a more prudent clinical approach.

18.
Connect Tissue Res ; 52(5): 380-92, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21405978

RESUMEN

We investigated the effects of lifelong voluntary exercise on articular cartilage of mice. At the age of 4 weeks C57BL mice (n = 152) were divided into two groups, with one group serving as a sedentary control whereas the other was allowed free access to a running wheel from the age of 1 month onward. Mice were euthanized at four different time points (1, 2, 6, and 18 months of age). Articular cartilage samples were gathered from the load-bearing area of the tibial medial plateaus, and osteoarthritis was graded. Additionally, the proteoglycan content distribution was assessed using digital densitometry, collagen fibril orientation, and parallelism with polarized light microscopy, and collagen content using Fourier transform infrared imaging spectroscopy. The incidence of osteoarthritis increased with aging, but exercise had no effect on this trend. Furthermore, the structure and composition revealed significant growth, maturation, and age-dependent properties. Exercise exerted a minor effect on collagen fibril orientation in the superficial zone. Fibril orientation at 2 months of age was more perpendicular to surface (p < 0.05) in controls compared with runners, whereas the situation was reversed at the age of 18 months (p < 0.05). The collagen content of the superficial zone was higher (p < 0.01) at the age of 18 months in controls compared with runners but the proteoglycan content did not display any exercise-dependent changes. In conclusion, growth, maturation, and aging exerted a clear effect on integrity, structure, and composition of medial tibial plateau articular cartilage in mice, whereas lifelong voluntary exercise had only a minor effect on collagen architecture and content.


Asunto(s)
Envejecimiento/fisiología , Cartílago Articular/crecimiento & desarrollo , Actividad Motora/fisiología , Osteoartritis/etiología , Tibia/crecimiento & desarrollo , Animales , Colágeno/ultraestructura , Articulaciones/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoartritis/patología , Carrera , Soporte de Peso
19.
Res Vet Sci ; 141: 95-102, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34706305

RESUMEN

The administration of lithium chloride (LiCl) for cardiac output (CO) measurement via a peripheral instead of a central vein has been described previously as a valid alternative route in pigs and dogs. The aim of the study was to compare CO measurements after administration of LiCl using two peripheral veins, cephalic or jugular, in goats. Ten adult, female, experimental goats undergoing bilateral stifle arthrotomy were recruited for the study. Paired CO measurements were taken two minutes apart during stable conditions in isoflurane-anaesthetised goats. Forty-two paired CO measurements were taken in total, and the median (range) of paired CO measurement per goat were 4.5 (3-6). The mean (SD) CO using the cephalic and jugular vein for injection of LiCl was 5.28 (1.29) L min-1 and 5.20 (1.24) L min-1 respectively. The Bland-Altman analysis showed an acceptable agreement with a mean bias of 1.33% with limits of agreement (LoA) of -18.43 to 21.09%. The percentage of error was 25%. The four-quadrant plot analysis showed a poor agreement (71%) between the two routes. The polar plot showed a poor trending ability. An 86% inclusion rate (18/21 points) was reached with a ± 35° radial sector size. The findings revealed that the agreement between the two routes is not as precise as the authors expected, however the results are comparable with studies published previously.


Asunto(s)
Isoflurano , Termodilución , Animales , Gasto Cardíaco , Perros , Femenino , Cabras , Litio , Cloruro de Litio , Porcinos , Termodilución/veterinaria
20.
Adv Healthc Mater ; 10(20): e2100878, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34405587

RESUMEN

Joint repair remains a major challenge in orthopaedics. Recent progress in biomaterial design has led to the fabrication of a plethora of promising devices. Pre-clinical testing of any joint repair strategy typically requires the use of large animal models (e.g., sheep, goat, pig or horse). Despite the key role of such models in clinical translation, there is still a lack of consensus regarding optimal experimental design, making it difficult to draw conclusions on their efficacy. In this context, the authors performed a systematic literature review and a risk of bias assessment on large animal models published between 2010 and 2020, to identify key experimental parameters that significantly affect the biomaterial therapeutic outcome and clinical translation potential (including defect localization, animal age/maturity, selection of controls, cell-free versus cell-laden). They determined that mechanically strong biomaterials perform better at the femoral condyles; while highlighted the importance of including native tissue controls to better evaluate the quality of the newly formed tissue. Finally, in cell-laded biomaterials, the pre-culture conditions played a more important role in defect repair than the cell type. In summary, here they present a systematic evaluation on how the experimental design of preclinical models influences biomaterial-based therapeutic outcomes in joint repair.


Asunto(s)
Materiales Biocompatibles , Cartílago Articular , Animales , Caballos , Articulación de la Rodilla , Modelos Animales , Ovinos , Porcinos , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA