Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0296357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578749

RESUMEN

OBJECTIVE: Quantitative values derived from PET brain images are of high interest for neuroscientific applications. Insufficient DT correction (DTC) can lead to a systematic bias of the output parameters obtained by a detailed analysis of the time activity curves (TACs). The DTC method currently used for the Siemens 3T MR BrainPET insert is global, i.e., differences in DT losses between detector blocks are not considered, leading to inaccurate DTC and, consequently, to inaccurate measurements masked by a bias. However, following careful evaluation with phantom measurements, a new block-pairwise DTC method has demonstrated a higher degree of accuracy compared to the global DTC method. APPROACH: Differences between the global and the block-pairwise DTC method were studied in this work by applying several radioactive tracers. We evaluated the impact on [11C]ABP688, O-(2-[18F]fluoroethyl)-L-tyrosine (FET), and [15O]H2O TACs. RESULTS: For [11C]ABP688, a relevant bias of between -0.0034 and -0.0053 ml/ (cm3 • min) was found in all studied brain regions for the volume of distribution (VT) when using the current global DTC method. For [18F]FET-PET, differences of up to 10% were observed in the tumor-to-brain ratio (TBRmax), these differences depend on the radial distance of the maximum from the PET isocenter. For [15O]H2O, differences between +4% and -7% were observed in the GM region. Average biases of -4.58%, -3.2%, and -1.2% for the regional cerebral blood flow (CBF (K1)), the rate constant k2, and the volume of distribution VT were observed, respectively. Conversely, in the white matter region, average biases of -4.9%, -7.0%, and 3.8% were observed for CBF (K1), k2, and VT, respectively. CONCLUSION: The bias introduced by the global DTC method leads to an overestimation in the studied quantitative parameters for all applications compared to the block-pairwise method. SIGNIFICANCE: The observed differences between the two DTC methods are particularly relevant for research applications in neuroscientific studies as they affect the accuracy of quantitative Brain PET images.


Asunto(s)
Encéfalo , Oximas , Tomografía de Emisión de Positrones , Piridinas , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Fantasmas de Imagen , Cabeza , Imagen por Resonancia Magnética
2.
Rev. bras. eng. biomed ; 30(4): 330-340, Oct.-Dec. 2014. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-732832

RESUMEN

INTRODUCTION: The objective of this paper is to verify the influence of the source geometry on Geiger Müller (GM) exposure rate data. This paper presents a validation of an application based on Monte Carlo (MC) data simulated using Geant4, based on a comparison of the exposure rates calculated via MC and Deterministic Calculations (DC) to experimental (measured) exposure rates. METHODS: Experimental data that were collected through measurements of standard sources were used for MC and DC validation. In addition, the best method of analyzing the impact of the real source geometry on calculations of a descarpack box of radioactive waste was verified. Furthermore, were estimated the exposure rates from a homogeneous solid waste box (used at clinical sites) and from a point source. These results were compared to confirm possible discrepancies related to source geometry in exposure rates collected using a GM detector. RESULTS: The investigated estimation methods were statistically compared; the MC presented higher agreement with the experimental data than did the deterministic calculations. The impact of considering a point source instead of the real geometry (descarpack box) was an underestimation of between 20% and 70%, depending on the source - detector distance and the isotope evaluated. CONCLUSION: The DC always presented a higher difference with respect to the experimental data than did the MC calculation. The use of realistic geometry proved to exert a significant impact on the exposure rate data for solid radioactive waste compared with the exposure rate induced by a point source; the exposure rate estimation obtained using the real geometry was always at least 16% higher than the estimation obtained for a point source, and some differences greater than 50% were found.

3.
Radiol. bras ; 44(3): 177-182, maio-jun. 2011. ilus, graf
Artículo en Portugués | LILACS | ID: lil-593338

RESUMEN

OBJETIVO: Validar a proposta do desenvolvimento de um ambiente colaborativo virtual para formação de pessoal em medicina nuclear. MATERIAIS E MÉTODOS: No desenvolvimento inicial do ambiente foram levantadas as premissas, restrições e funcionalidades que deveriam ser oferecidas aos profissionais da área. O protótipo foi desenvolvido no ambiente Moodle, incluindo funcionalidades de armazenamento de dados e interação. Um estudo piloto de interação no ambiente foi realizado com uma amostra de profissionais especialistas em medicina nuclear. Análises quantitativas e de conteúdo foram realizadas a partir de um questionário semiestruturado de opinião dos usuários. RESULTADOS: A proposta do ambiente colaborativo foi validada por uma comunidade de profissionais que atuam nesta área e considerada relevante visando a auxiliar na formação de pessoal. Sugestões de melhorias e novas funcionalidades foram indicadas. Observou-se a necessidade de estabelecer um programa de formação dos moderadores no ambiente, visto que são necessárias características de interação distintas do ensino presencial. CONCLUSÃO: O ambiente colaborativo poderá permitir a troca de experiências e a discussão de casos entre profissionais localizados em instituições de diferentes regiões do País, possibilitando uma aproximação e colaboração entre esses profissionais. Assim, o ambiente pode contribuir para formação inicial e continuada de profissionais que atuam em medicina nuclear.


OBJECTIVE: To validate the proposal for development of a virtual collaborative environment for training of nuclear medicine personnel. MATERIALS AND METHODS: Organizational assumptions, constraints and functionalities that should be offered to the professionals in this field were raised early in the development of the environment. The prototype was developed in the Moodle environment, including data storage and interaction functionalities. A pilot interaction study was developed with a sample of specialists in nuclear medicine. Users' opinions collected by means of semi-structured questionnaire were submitted to quantitative and content analysis. RESULTS: The proposal of a collaborative environment was validated by a community of nuclear medicine professionals and considered as an aid in the training in this field. Suggestions for improvements and new functionalities were made. There is a need to establish a program for education of moderators specifically for this environment, considering the different interaction characteristics as the online and conventional teaching methods are compared. CONCLUSION: The collaborative environment will allow the exchange of experiences and case discussions among professionals from institutions located in different regions all over the country, enhancing the collaboration among them. Thus, the environment can contribute in the early and continued education of nuclear medicine professionals.


Asunto(s)
Humanos , Masculino , Femenino , Adulto Joven , Persona de Mediana Edad , Educación Médica , Medicina Nuclear/educación , Medicina Nuclear/métodos , Capacitación Profesional , Educación a Distancia , Enseñanza/métodos , Revisión por Pares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA