RESUMEN
α1-Antitrypsin (AAT), an acute-phase reactant not unsimilar to C-reactive protein (CRP), is a serine protease inhibitor that harbors tissue-protective and immunomodulatory attributes. Its concentrations appropriately increase during conditions of extensive tissue injury, and it induces immune tolerance, in part, by inhibiting the enzymatic activity of the inflammatory serine protease, proteinase 3 (PR3). Typically administered to patients with genetic AAT deficiency, AAT treatment was recently shown to improve outcomes in patients with steroid-refractory graft-versus-host disease (GVHD). GVHD represents a grave outcome of allogeneic hematopoietic stem cell transplantation (HSCT), a potentially curative intervention for hematological diseases. The procedure requires radio/chemotherapy conditioning of the prospective marrow recipient, a cytotoxic process that causes vast tissue injury and, in some formats, interferes with liver production of AAT. To date, changes in the functional profile of AAT during allogeneic HSCT, and during the cytotoxic intervention that precedes HSCT, are unknown. The present study followed 53 patients scheduled for allogeneic HSCT (trial registration NCT03188601). Serum samples were tested before and after HSCT for AAT and CRP levels and for intrinsic anti-proteolytic activity. The ex vivo response to clinical-grade AAT was tested on circulating patient leukocytes and on a human epithelial cell line treated with patient sera in a gap closure assay. According to the ex vivo experiments, circulating leukocytes responded to AAT with a favorable immune-regulated profile, and epithelial gap closure was enhanced by AAT in sera from GVHD-free patients but not in sera from patients who developed GVHD. According to serum collected prior to HSCT, non-relapse mortality was reliably predicted by combining three components: AAT and CRP levels and serum anti-proteolytic activity. Taken together, HSCT outcomes are significantly affected by the anti-proteolytic function of circulating AAT, supporting early AAT augmentation therapy for allogeneic HSCT patients.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Estudios Prospectivos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Serina Proteasas , Serina Endopeptidasas , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & controlRESUMEN
OBJECTIVE: To assess the feasibility of Fractional exhaled Nitric Oxide (FeNO) as a simple, non-invasive, cost-effective and portable biomarker and decision support tool for risk stratification of COVID-19 patients. METHODS: We conducted a single-center prospective cohort study of COVID-19 patients whose FeNO levels were measured upon ward admission by the Vivatmo-me handheld device. Demographics, COVID-19 symptoms, and relevant hospitalization details were retrieved from the hospital databases. The patients were divided into those discharged to recover at home and those who died during hospitalization or required admission to an intensive care unit, internal medicine ward, or dedicated facility (severe outcomes group). RESULTS: Fifty-six patients were enrolled. The only significant demographic difference between the severe outcomes patients (n = 14) and the home discharge patients (n = 42) was age (64.21 ± 13.97 vs. 53.98 ± 15.57 years, respectively, P = .04). The admission FeNO measurement was significantly lower in the former group compared with the latter group (15.86 ± 14.74 vs. 25.77 ± 13.79, parts per billion [PPB], respectively, P = .008). Time to severe outcome among patients with FeNO measurements ≤11.8 PPB was significantly shorter compared with patients whose FeNO measured >11.8 PPB (19.25 ± 2.96 vs. 24.41 ± 1.09 days, respectively, 95% confidence interval [CI] 1.06 to 4.25). An admission FeNO ≤11.8 PPB was a significant risk factor for severe outcomes (odds ratio = 12.8, 95% CI: 2.78 to 58.88, P = .001), with a receiver operating characteristics curve of 0.752. CONCLUSIONS: FeNO measurements by the Vivatmo-me handheld device can serve as a biomarker and COVID-19 support tool for medical teams. These easy-to-use, portable, and noninvasive devices may serve as valuable ED bedside tools during a pandemic.
Asunto(s)
COVID-19 , Espiración , Biomarcadores , Pruebas Respiratorias , COVID-19/diagnóstico , Prueba de Óxido Nítrico Exhalado Fraccionado , Humanos , Óxido Nítrico , Estudios Prospectivos , Índice de Severidad de la EnfermedadRESUMEN
Immunosuppressive drugs are an inherent component of hematopoietic stem cell transplantation (HSCT) for the prevention of acute graft-versus-host disease (GVHD). Circulating α1-antitrypsin (AAT), a serine-protease inhibitor produced predominantly by hepatocytes that rises during acute phase responses, is lost in patient's stool due to gastrointestinal GVHD, and its augmentation has been found to attenuate GVHD. Here we explored the effect of immunosuppressive drugs on hepatocyte production of AAT and intestinal epithelial gap repair. The effect of commonly used immunosuppressants on AAT production was examined in vitro using HepG2 cells and primary mouse hepatocytes, and their impact on human intestinal epithelial cell line gap repair was evaluated. Sera from 12 allogeneic HSCT recipients, obtained at 14 days post-transplantation, predating the diagnosis of GVHD (n = 6), were examined for reepithelialization, with added clinical-grade AAT. Rapamycin compromised AAT production under inflammatory conditions. Mycophenolate mofetil and cyclosporine A (CSA) inhibited reepithelialization; AAT minimized the effect of CSA. Patient sera displayed superior gap repair with exogenous AAT. Functional insufficiency in circulating AAT may be the result of drug toxicities leading to ineffective gut reepithelization and compromised gut lining. Taken together, our data strengthen the rationale for incorporating AAT augmentation therapy into immunosuppressive treatment protocols.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Preparaciones Farmacéuticas , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/prevención & control , Hepatocitos , Humanos , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Ácido MicofenólicoRESUMEN
Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder which most commonly manifests as pulmonary emphysema. Accordingly, alpha-1 antitrypsin (AAT) augmentation therapy aims to reduce the progression of emphysema, as achieved by life-long weekly slow-drip infusions of plasma-derived affinity-purified human AAT. However, not all AATD patients will receive this therapy, due to either lack of medical coverage or low patient compliance. To circumvent these limitations, attempts are being made to develop lung-directed therapies, including inhaled AAT and locally-delivered AAT gene therapy. Lung transplantation is also an ultimate therapy option. Although less common, AATD patients also present with disease manifestations that extend beyond the lung, including vasculitis, diabetes and panniculitis, and appear to experience longer and more frequent hospitalization times and more frequent pneumonia bouts. In the past decade, new mechanism-based clinical indications for AAT therapy have surfaced, depicting a safe, anti-inflammatory, immunomodulatory and tissue-protective agent. Introduced to non-AATD individuals, AAT appears to provide relief from steroid-refractory graft-versus-host disease, from bacterial infections in cystic fibrosis and from autoimmune diabetes; preclinical studies show benefit also in multiple sclerosis, ulcerative colitis, rheumatoid arthritis, acute myocardial infarction and stroke, as well as ischemia-reperfusion injury and aberrant wound healing processes. While the current augmentation therapy is targeted towards treatment of emphysema, it is suggested that AATD patients may benefit from AAT augmentation therapy geared towards extrapulmonary pathologies as well. Thus, development of mechanism-based, context-specific AAT augmentation therapy protocols is encouraged. In the current review, we will discuss extrapulmonary manifestations of AATD and the potential of AAT augmentation therapy for these conditions.