Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Exp Bot ; 75(3): 962-978, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37935881

RESUMEN

We examined photosynthetic traits of pre-existing and newly developed flag leaves of four wheat genotypes grown in controlled-environment experiments. In newly developed leaves, acclimation of the maximum rate of net CO2 assimilation (An) to warm nights (i.e. increased An) was associated with increased capacity of Rubisco carboxylation and photosynthetic electron transport, with Rubisco activation state probably contributing to increased Rubisco activity. Metabolite profiling linked acclimation of An to greater accumulation of monosaccharides and saturated fatty acids in leaves; these changes suggest roles for osmotic adjustment of leaf turgor pressure and maintenance of cell membrane integrity. By contrast, where An decreased under warm nights, the decline was related to lower stomatal conductance and rates of photosynthetic electron transport. Decreases in An occurred despite higher basal PSII thermal stability in all genotypes exposed to warm nights: Tcrit of 45-46.5 °C in non-acclimated versus 43.8-45 °C in acclimated leaves. Pre-existing leaves showed no change in An-temperature response curves, except for an elite heat-tolerant genotype. These findings illustrate the impact of night-time warming on the ability of wheat plants to photosynthesize during the day, thereby contributing to explain the impact of global warming on crop productivity.


Asunto(s)
Calor , Triticum , Triticum/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Aclimatación , Dióxido de Carbono/metabolismo
2.
Plant J ; 111(5): 1368-1382, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35781899

RESUMEN

High temperature stress inhibits photosynthesis and threatens wheat production. One measure of photosynthetic heat tolerance is Tcrit - the critical temperature at which incipient damage to photosystem II (PSII) occurs. This trait could be improved in wheat by exploiting genetic variation and genotype-by-environment interactions (GEI). Flag leaf Tcrit of 54 wheat genotypes was evaluated in 12 thermal environments over 3 years in Australia, and analysed using linear mixed models to assess GEI effects. Nine of the 12 environments had significant genetic effects and highly variable broad-sense heritability (H2 ranged from 0.15 to 0.75). Tcrit GEI was variable, with 55.6% of the genetic variance across environments accounted for by the factor analytic model. Mean daily growth temperature in the month preceding anthesis was the most influential environmental driver of Tcrit GEI, suggesting biochemical, physiological and structural adjustments to temperature requiring different durations to manifest. These changes help protect or repair PSII upon exposure to heat stress, and may improve carbon assimilation under high temperature. To support breeding efforts to improve wheat performance under high temperature, we identified genotypes superior to commercial cultivars commonly grown by farmers, and demonstrated potential for developing genotypes with greater photosynthetic heat tolerance.


Asunto(s)
Complejo de Proteína del Fotosistema II , Termotolerancia , Clorofila , Interacción Gen-Ambiente , Fotosíntesis/genética , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Fitomejoramiento , Triticum/fisiología
3.
J Exp Bot ; 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35604885

RESUMEN

Wheat photosynthetic heat tolerance can be characterized using minimal chlorophyll fluorescence to quantify the critical temperature (Tcrit) above which incipient damage to the photosynthetic machinery occurs. We investigated intraspecies variation and plasticity of wheat Tcrit under elevated temperature in field and controlled-environment experiments, and assessed whether intraspecies variation mirrored interspecific patterns of global heat tolerance. In the field, wheat Tcrit varied diurnally-declining from noon through to sunrise-and increased with phenological development. Under controlled conditions, heat stress (36 °C) drove a rapid (within 2 h) rise in Tcrit that peaked after 3-4 d. The peak in Tcrit indicated an upper limit to PSII heat tolerance. A global dataset [comprising 183 Triticum and wild wheat (Aegilops) species] generated from the current study and a systematic literature review showed that wheat leaf Tcrit varied by up to 20 °C (roughly two-thirds of reported global plant interspecies variation). However, unlike global patterns of interspecies Tcrit variation that have been linked to latitude of genotype origin, intraspecific variation in wheat Tcrit was unrelated to that. Overall, the observed genotypic variation and plasticity of wheat Tcrit suggest that this trait could be useful in high-throughput phenotyping of wheat photosynthetic heat tolerance.

4.
J Exp Bot ; 73(3): 915-926, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34652413

RESUMEN

Warming nights are correlated with declining wheat growth and yield. As a key determinant of plant biomass, respiration consumes O2 as it produces ATP and releases CO2 and is typically reduced under warming to maintain metabolic efficiency. We compared the response of respiratory O2 and CO2 flux to multiple night and day warming treatments in wheat leaves and roots, using one commercial (Mace) and one breeding cultivar grown in controlled environments. We also examined the effect of night warming and a day heatwave on the capacity of the ATP-uncoupled alternative oxidase (AOX) pathway. Under warm nights, plant biomass fell, respiratory CO2 release measured at a common temperature was unchanged (indicating higher rates of CO2 release at prevailing growth temperature), respiratory O2 consumption at a common temperature declined, and AOX pathway capacity increased. The uncoupling of CO2 and O2 exchange and enhanced AOX pathway capacity suggest a reduction in plant energy demand under warm nights (lower O2 consumption), alongside higher rates of CO2 release under prevailing growth temperature (due to a lack of down-regulation of respiratory CO2 release). Less efficient ATP synthesis, teamed with sustained CO2 flux, could thus be driving observed biomass declines under warm nights.


Asunto(s)
Dióxido de Carbono , Triticum , Aclimatación/fisiología , Biomasa , Dióxido de Carbono/metabolismo , Fitomejoramiento , Hojas de la Planta/metabolismo , Temperatura
5.
Theor Appl Genet ; 135(1): 107-124, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34643761

RESUMEN

KEY MESSAGE: QTL controlling vigour and related traits were identified in a chickpea RIL population and validated in diverse sets of germplasm. Robust KASP markers were developed for marker-assisted selection. To understand the genetic constitution of vigour in chickpea (Cicer arietinum L.), genomic data from a bi-parental population and multiple diversity panels were used to identify QTL, sequence-level haplotypes and genetic markers associated with vigour-related traits in Australian environments. Using 182 Recombinant Inbred Lines (RILs) derived from a cross between two desi varieties, Rupali and Genesis836, vigour QTL independent of flowering time were identified on chromosomes (Ca) 1, 3 and 4 with genotypic variance explained (GVE) ranging from 7.1 to 28.8%. Haplotype analysis, association analysis and graphical genotyping of whole-genome re-sequencing data of two diversity panels consisting of Australian and Indian genotypes and an ICRISAT Chickpea Reference Set revealed a deletion in the FTa1-FTa2-FTc gene cluster of Ca3 significantly associated with vigour and flowering time. Across the RIL population and diversity panels, the impact of the deletion was consistent for vigour but not flowering time. Vigour-related QTL on Ca4 co-located with a QTL for seed size in Rupali/Genesis836 (GVE = 61.3%). Using SNPs from this region, we developed and validated gene-based KASP markers across different panels. Two markers were developed for a gene on Ca1, myo -inositol monophosphatase (CaIMP), previously proposed to control seed size, seed germination and seedling growth in chickpea. While associated with vigour in the diversity panels, neither the markers nor broader haplotype linked to CaIMP was polymorphic in Rupali/Genesis836. Importantly, vigour appears to be controlled by different sets of QTL across time and with components which are independent from phenology.


Asunto(s)
Cicer/genética , Genoma de Planta , Cicer/crecimiento & desarrollo , Estudios de Asociación Genética , Marcadores Genéticos , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Semillas/anatomía & histología , Semillas/genética
6.
Plant Cell Environ ; 44(7): 2331-2346, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33283881

RESUMEN

Climate change and future warming will significantly affect crop yield. The capacity of crops to dynamically adjust physiological processes (i.e., acclimate) to warming might improve overall performance. Understanding and quantifying the degree of acclimation in field crops could ensure better parameterization of crop and Earth System models and predictions of crop performance. We hypothesized that for field-grown wheat, when measured at a common temperature (25°C), crops grown under warmer conditions would exhibit acclimation, leading to enhanced crop performance and yield. Acclimation was defined as (a) decreased rates of net photosynthesis at 25°C (A25 ) coupled with lower maximum carboxylation capacity (Vcmax25 ), (b) reduced leaf dark respiration at 25°C (both in terms of O2 consumption Rdark _O225 and CO2 efflux Rdark _CO225 ) and (c) lower Rdark _CO225 to Vcmax25 ratio. Field experiments were conducted over two seasons with 20 wheat genotypes, sown at three different planting dates, to test these hypotheses. Leaf-level CO2 -based traits (A25 , Rdark _CO225 and Vcmax25 ) did not show the classic acclimation responses that we hypothesized; by contrast, the hypothesized changes in Rdark_ O2 were observed. These findings have implications for predictive crop models that assume similar temperature response among these physiological processes and for predictions of crop performance in a future warmer world.


Asunto(s)
Aclimatación/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Triticum/fisiología , Dióxido de Carbono/metabolismo , Genotipo , Calentamiento Global , Oxígeno/metabolismo , Semillas/crecimiento & desarrollo , Temperatura , Triticum/genética , Victoria
7.
New Phytol ; 225(3): 1111-1119, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31127613

RESUMEN

Plants are inherently dynamic. Dynamics minimize stress while enabling plants to flexibly acquire resources. Three examples are presented for plants tolerating saline soil: transport of sodium chloride (NaCl), water and macronutrients is nonuniform along a branched root; water and NaCl redistribute between shoot and soil at night-time; and ATP for salt exclusion is much lower in thinner branch roots than main roots, quantified using a biophysical model and geometry from anatomy. Noninvasive phenotyping and precision agriculture technologies can be used together to harness plant dynamics, but analytical methods are needed. A plant advancing in time through a soil and atmosphere space is proposed as a framework for dynamic data and their relationship to crop improvement.


Asunto(s)
Metabolismo Energético , Nitrógeno/metabolismo , Fósforo/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Estrés Fisiológico , Agua/metabolismo
8.
J Exp Bot ; 70(19): 5051-5069, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31145793

RESUMEN

High temperatures account for major wheat yield losses annually and, as the climate continues to warm, these losses will probably increase. Both photosynthesis and respiration are the main determinants of carbon balance and growth in wheat, and both are sensitive to high temperature. Wheat is able to acclimate photosynthesis and respiration to high temperature, and thus reduce the negative affects on growth. The capacity to adjust these processes to better suit warmer conditions stands as a potential avenue toward reducing heat-induced yield losses in the future. However, much remains to be learnt about such phenomena. Here, we review what is known of high temperature tolerance in wheat, focusing predominantly on the high temperature responses of photosynthesis and respiration. We also identify the many unknowns that surround this area, particularly with respect to the high temperature response of wheat respiration and the consequences of this for growth and yield. It is concluded that further investigation into the response of photosynthesis and respiration to high temperature could present several methods of improving wheat high temperature tolerance. Extending our knowledge in this area could also lead to more immediate benefits, such as the enhancement of current crop models.


Asunto(s)
Dióxido de Carbono/metabolismo , Calor , Fotosíntesis/fisiología , Termotolerancia/fisiología , Triticum/fisiología
9.
J Exp Bot ; 69(3): 349-369, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29370385

RESUMEN

Yields of grain legumes are constrained by available water. Thus, it is crucial to understand traits influencing water uptake and the efficiency of using water to produce biomass. Global comparisons and comparisons at specific locations reveal that water use of different grain legumes is very similar, which indicates that water use efficiency varies over a wide range due to differences in biomass and yield. Moreover, yield increases more per millimetre of water used in cool season grain legumes than warm season species. Although greater contrasts have been observed across species and genotypes at the pot and lysimeter level, agronomic factors need to be taken into account when scaling those studies to field-level responses. Conservative water use strategies in grain legumes such as low stomatal conductance as approximated by low photosynthetic carbon isotope discrimination reduces yield potential, whereas temporal adjustments of stomatal conductance within the growing season and in response to environmental factors (such as vapour pressure deficit) helps to optimize the trade-off between carbon gain and water loss. Furthermore, improved photosynthetic capacity, reduced mesophyll conductance, reduced boundary layer, and re-fixation of respired CO2 were identified as traits that are beneficial without water deficit, but also under terminal and transient drought. Genotypic variability in some grain legume species has been observed for several traits that influence water use, water use efficiency, and yield, including root length and the temporal pattern of water use, but even more variation is expected from wild relatives. Albeit that N2 fixation decreases under drought, its impact on water use is still largely unknown, but the nitrogen source influences gas exchange and, thus, transpiration efficiency. This review concludes that conservative traits are needed under conditions of terminal drought to help maintain soil moisture until the pod-filling period, but profligate traits, if tightly regulated, are important under conditions of transient drought in order to profit from short intermittent periods of available soil moisture.


Asunto(s)
Productos Agrícolas/fisiología , Sequías , Fabaceae/fisiología , Rasgos de la Historia de Vida , Agua/fisiología , Grano Comestible/fisiología
10.
Glob Chang Biol ; 21(2): 857-73, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25330325

RESUMEN

The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high-yielding traits of restricted-tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high-tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly-tunnels in a four-factor completely randomized split-plot design with elevated CO2 (700 µL L(-1)), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24-35% in all four lines and terminal drought significantly reduced grain yield by 16-17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade-off between yield components limited grain yield in lines with greater sink capacity (free-tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade-off in yield components.


Asunto(s)
Dióxido de Carbono/metabolismo , Cambio Climático , Sequías , Triticum/crecimiento & desarrollo , Biomasa , Grano Comestible/crecimiento & desarrollo , Calor
12.
Plants (Basel) ; 11(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36015478

RESUMEN

High temperature and water deficit are the most critical yield-limiting environmental factors for wheat in rainfed environments. It is important to understand the heat avoidance mechanisms and their associations with leaf morpho-physiological traits that allow crops to stay cool and retain high biomass under warm and dry conditions. We examined 20 morpho-physiologically diverse wheat genotypes under ambient and elevated temperatures (Tair) to investigate whether increased water use leads to high biomass retention due to increased leaf cooling. An experiment was conducted under well-watered conditions in two partially controlled glasshouses. We measured plant transpiration (Tr), leaf temperature (Tleaf), vapor pressure deficit (VPD), and associated leaf morpho-physiological characteristics. High water use and leaf cooling increased biomass retention under high temperatures, but increased use did not always increase biomass retention. Some genotypes maintained biomass, irrespective of water use, possibly through mechanisms other than leaf cooling, indicating their adaptation under water shortage. Genotypic differences in leaf cooling capacity did not always correlate with Tr (VPD) response. In summary, the contribution of high water use or the leaf cooling effect on biomass retention under high temperature is genotype-dependent and possibly due to variations in leaf morpho-physiological traits. These findings are useful for breeding programs to develop climate resilient wheat cultivars.

13.
Front Plant Sci ; 12: 739246, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707628

RESUMEN

Wheat is sensitive to high-temperature stress with crop development significantly impaired depending on the severity and timing of stress. Various physiological mechanisms have been identified as selection targets for heat tolerance; however, the complex nature of the trait and high genotype × temperature interaction limits the selection process. A three-tiered phenotyping strategy was used to overcome this limitation by using wheat genotypes developed from the ancient domesticated wheat, emmer (Triticum dicoccon Schrank), which was considered to have a wide variation for abiotic stress tolerance. A contrasting pair of emmer-based hexaploid lines (classified as tolerant; G1 and susceptible; G2) developed from a backcross to the same recurrent hexaploid parent was chosen based on heat stress responses in the field and was evaluated under controlled glasshouse conditions. The same pair of contrasting genotypes was also subsequently exposed to a short period of elevated temperature (4 days) at anthesis under field conditions using in-field temperature-controlled chambers. The glasshouse and field-based heat chambers produced comparable results. G1 was consistently better adapted to both extended and short periods of heat stress through slow leaf senescence under heat stress, which extended the grain filling period, increased photosynthetic capacity, increased grain filling rates, and resulted in greater kernel weight and higher yield. The use of a combination of phenotyping methods was effective in identifying heat tolerant materials and the mechanisms involved.

14.
Plant Sci ; 304: 110738, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33568290

RESUMEN

Wheat is sensitive to heat stress, particularly during grain filling, and this reduces grain yield. Ancestral wheat species, such as emmer wheat (Triticum dicoccon Schrank), represent potential sources of new genetic diversity for traits that may impact wheat responses to heat stress. However, the diversity available in emmer wheat has only been explored superficially. Recently developed emmer derived hexaploid wheat genotypes were evaluated for physiological, phenological and agronomic traits in a multi-environment, multi-season strategy. The emmer-based hexaploid lines were developed from crosses and backcrosses to 9 hexaploid recurrent parents and these genotypes and 7 commercial cultivars were evaluated under two times of sowing (E1 and E2) in the field for three consecutive years (2014-2016). The materials were genotyped using a 90 K SNP platform and these data used to estimate the contribution of emmer wheat to the progeny. Significant phenotypic and genetic variation for traits were observed. Higher temperature during reproductive development and grain filling reduced trait expression. Emmer progeny with greater trait values than their recurrent parents and commercial cultivars in both environments were found. Derivatives with higher physiological trait values yielded well in both environments; as indicated by the clustering of genotypes. The emmer wheat parent contributed between 1 and 43 % of the genome of the emmer-based hexaploid progeny, and progeny with greater emmer contribution had superior trait values in both environments. These results showed a positive effect of direct emmer introgression on wheat performance under heat stress. Mitigation of high temperature stress through the introgression of favorable alleles from wheat close relatives into modern wheat cultivars is possible.


Asunto(s)
Introgresión Genética/genética , Triticum/genética , Introgresión Genética/fisiología , Variación Genética , Respuesta al Choque Térmico , Fitomejoramiento , Poliploidía , Carácter Cuantitativo Heredable , Triticum/crecimiento & desarrollo , Triticum/fisiología
15.
Plant Sci ; 295: 110212, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32534607

RESUMEN

Emmer wheat (Triticum dicoccon Schrank) is a potential source of new genetic diversity for the improvement of hexaploid bread wheat. Emmer wheat was crossed and backcrossed to bread wheat and 480 doubled haploids (DHs) were produced from BC1F1 plants with hexaploid appearance derived from 19 crossses. These DHs were screened under well-watered conditions (E1) in 2013 to identify high-yielding materials with similar phenology. One-hundred and eighty seven DH lines selected on this basis, 4 commercial bread wheat cultivars and 9 bread wheat parents were then evaluated in extensive field experiments under two contrasting moisture regimes in north-western NSW in 2014 and 2015. A significant range in the water-use-efficiency of grain production (WUEGrain) was observed among the emmer derivatives. Of these, 8 hexaploid lines developed from 8 different emmer wheat parents had significantly improved intrinsic water-use-efficiency (WUEintr) and instantaneous water-use-efficiency (WUEi) compared to their bread wheat recurrent parents. Accurate and large scale field-based phenotyping was effective in identifying emmer wheat derived lines with superior performance to their hexaploid bread wheat recurrent parents under moisture stress.


Asunto(s)
Fitomejoramiento , Triticum/fisiología , Agua/metabolismo , Sequías , Nueva Gales del Sur , Poliploidía , Triticum/genética , Triticum/crecimiento & desarrollo
16.
Front Plant Sci ; 9: 1529, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524452

RESUMEN

Rising global temperatures cause substantial yield losses in many wheat growing environments. Emmer wheat (Triticum dicoccon Schrank), one of the first wheat species domesticated, carries significant variation for tolerance to abiotic stresses. This study identified new genetic variability for high-temperature tolerance in hexaploid progeny derived from crosses with emmer wheat. Eight hexaploid and 11 tetraploid parents were recombined in 43 backcross combinations using the hexaploid as the recurrent parent. A total of 537 emmer-based hexaploid lines were developed by producing approximately 10 doubled haploids on hexaploid like BC1F1 progeny and subsequent selection for hexaploid morphology. These materials and 17 commercial cultivars and hexaploid recurrent parents were evaluated under two times of sowing in the field, in 2014-2016. The materials were genotyped using a 90K SNP platform and these data were used to estimate the contribution of emmer wheat to the progeny. Significant phenotypic and genetic variation for key agronomical traits including grain yield, TKW and screenings was observed. Many of the emmer derived lines showed improved performance under heat stress (delayed sowing) compared with parents and commercial cultivars. Emmer derived lines were the highest yielding material in both sowing dates. The emmer wheat parent contributed between 1 and 44% of the genome of the derived lines. Emmer derived lines with superior kernel weight and yield generally had a greater genetic contribution from the emmer parent compared to those with lower trait values. The study showed that new genetic variation for key traits such as yield, kernel weight and screenings can be introduced to hexaploid wheat from emmer wheat. These genetic resources should be explored more systematically to stabilize grain yield and quality in a changing climate.

17.
Funct Plant Biol ; 44(3): 279-289, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32480563

RESUMEN

Post-anthesis water use is important for grain yield in wheat under drought because this water is immediately used for grain filling. The aim of this study was to determine whether root capacity for water uptake from deeper layers in the soil profile differed between two genotypes with contrasting stomatal behaviour under terminal drought. The wheat cultivar Drysdale and the breeding line IGW-3262 were grown in 1m deep pots in a glasshouse under well-watered conditions until anthesis, when three watering treatments were imposed: (i) watering maintained at 90% pot soil water capacity (WW), (ii) watering withheld but supplementary watering supplied to the bottom 30cm of the pot to keep this layer of the soil profile wet until physiological maturity (WB) and (iii) watering completely withheld (WS). Stomatal conductance, post-anthesis water use and water use efficiency, and grain yield were measured. Post-anthesis water use in Drysdale was similar in the WB and WW treatments, while in IGW-3262 it was 30% less in the WB treatment than in the WW treatment. In the WB treatment as the top soil dried, stomatal closure was faster in IGW-3262 than in Drysdale, which may have affected the capacity of roots to uptake available water at depth. The reduction in post-anthesis water use in IGW-3262 resulted in a decline in grain yield.

18.
Nat Plants ; 2: 16112, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28221372

RESUMEN

The United Nations declared 2016 as the International Year of Pulses (grain legumes) under the banner 'nutritious seeds for a sustainable future'. A second green revolution is required to ensure food and nutritional security in the face of global climate change. Grain legumes provide an unparalleled solution to this problem because of their inherent capacity for symbiotic atmospheric nitrogen fixation, which provides economically sustainable advantages for farming. In addition, a legume-rich diet has health benefits for humans and livestock alike. However, grain legumes form only a minor part of most current human diets, and legume crops are greatly under-used. Food security and soil fertility could be significantly improved by greater grain legume usage and increased improvement of a range of grain legumes. The current lack of coordinated focus on grain legumes has compromised human health, nutritional security and sustainable food production.


Asunto(s)
Agricultura , Productos Agrícolas , Fabaceae , Abastecimiento de Alimentos , Salud Global , Agricultura/normas , Productos Agrícolas/crecimiento & desarrollo , Humanos
19.
Funct Plant Biol ; 42(10): 1001-1009, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32480739

RESUMEN

Information about water relations within crop canopies is needed to improve our understanding of canopy resource distribution and crop productivity. In this study, we examined the dehydration/rehydration kinetics of different organs of wheat plants using ZIM-probes that continuously monitor water status non-destructively. ZIM-probes were clamped to the flag leaf and penultimate leaf of the same stem to monitor changes in turgor pressure, and a novel stem probe was clamped to the peduncle (just below the spike of the same stem) to monitor changes in stem water status. All organs behaved similarly under well-watered conditions, dehydrating and recovering at the same times of day. When water was withheld, the behaviour diverged, with the leaves showing gradual dehydration and incomplete recovery in leaf turgor pressure during the night, but the stem was affected to a lesser extent. Penultimate leaves were the most severely affected, reaching turgor loss point before the flag leaf. Upon rewatering, turgor pressure recovered but the output patch-pressure of the probes (Pp) oscillated at ~30min periods in all organs of most plants (n=4). Oscillations in Pp were attributed to oscillations in stomatal opening and appear to only occur above a threshold light intensity. The mechanisms identified in this study will be beneficial for crop productivity because the flag leaf is the source of most photoassimilates in developing grains, so the plant's ability to maintain flag leaf hydration at the expense of older leaves should moderate the impact of drought on yield. Stomatal oscillations could increase water use efficiency as the plant attempts to rehydrate after drought.

20.
Funct Plant Biol ; 43(1): 62-74, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32480442

RESUMEN

Terminal drought is a common abiotic stress affecting wheat yield in Mediterranean-type environments. As terminal drought develops, top layers of the soil profile dry, exposing the upper part of the root system to soil water deficit while deeper roots can still access soil water. Since open stomata rapidly exhausts available soil water, reducing stomatal conductance to prolong availability of soil water during grain filling may improve wheat yields in water-limited environments. It was hypothesised that genotypes with more root biomass in the drying upper layer of the soil profile accumulate more abscisic acid in the leaf and initiate stomatal closure to regulate water use under terminal drought. The wheat cultivar Drysdale and the breeding line IGW-3262 were grown in pots horizontally split into two segments by a wax-coated layer that hydraulically isolated the top and bottom segments, but allowed roots to grow into the bottom segment. Terminal drought was induced from anthesis by withholding water from (i) the top segment only (DW) and (ii) the top and bottom segments (DD) while both segments in well-watered pots (WW) were maintained at 90% pot soil water capacity. Drysdale, initiated stomatal closure earlier than IGW-3262, possibly due to higher signal strength generated in its relatively larger proportion of roots in the drying top segment. The relationship between leaf ABA and stomatal conductance was strong in Drysdale but weak in IGW-3262. Analysis of ABA metabolites suggests possible differences in ABA metabolism between these two genotypes. A higher capability of deeper roots to extract available water is also important in reducing the gap between actual and potential yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA