RESUMEN
Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.
Asunto(s)
Ecosistema , Agua Subterránea , Biodiversidad , Agua Dulce , Contaminación AmbientalRESUMEN
Subterranean ecosystems (comprising terrestrial, semi-aquatic, and aquatic components) are increasingly threatened by human activities; however, the current network of surface-protected areas is inadequate to safeguard subterranean biodiversity. Establishing protected areas for subterranean ecosystems is challenging. First, there are technical obstacles in mapping three-dimensional ecosystems with uncertain boundaries. Second, the rarity and endemism of subterranean organisms, combined with a scarcity of taxonomists, delays the accumulation of essential biodiversity knowledge. Third, establishing agreements to preserve subterranean ecosystems requires collaboration among multiple actors with often competing interests. This perspective addresses the challenges of preserving subterranean biodiversity through protected areas. Even in the face of uncertainties, we suggest it is both timely and critical to assess general criteria for subterranean biodiversity protection and implement them based on precautionary principles. To this end, we examine the current status of European protected areas and discuss solutions to improve their coverage of subterranean ecosystems.
RESUMEN
The Yucatán Peninsula, Mexico is a carbonate platform well-known for extensive karst networks of densely stratified aquifer ecosystems. This aquifer supports diverse anchialine fauna, including species of the globally distributed anchialine shrimp genus Typhlatya (Atyidae). Four species (T. campecheae, T. pearsei, T. dzilamensis and T. mitchelli) are endemic to the Peninsula, of which three are federally listed in Mexico. This first integrative evaluation (i.e., molecular, morphological, broad geographic and type locality sampling, and environmental data) of Yucatán Typhlatya reveals considerable species identity conflict in prior phylogenetic assessments, broad species ranges, syntopy within cave systems and five genetic lineages (of which two are new to science). Despite sampling from the type locality of endangered T. campecheae, specimens (and molecular data) were indistinguishable from vulnerable T. pearsei. Ancestral/divergence reconstructions support convergent evolution of a low-salinity ancestor for a post-Paleogene arc Yucatán + Cuba Typhlatya clade within the anchialine Atyidae clade. A secondary adaptation for the coastal-restricted euryhaline (2-37 psu), Typhlatya dzilamensis (unknown conservation status) was identified, while remaining species lineages were low-salinity (< 5 psu) adapted and found within the meteoric lens of inland and coastal caves. This study demonstrates the need for integrative/interdisciplinary approaches when conducting biodiversity assessments in complex and poorly studied aquifers.