Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 160(4): 619-630, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679758

RESUMEN

A central paradigm within virology is that each viral particle largely behaves as an independent infectious unit. Here, we demonstrate that clusters of enteroviral particles are packaged within phosphatidylserine (PS) lipid-enriched vesicles that are non-lytically released from cells and provide greater infection efficiency than free single viral particles. We show that vesicular PS lipids are co-factors to the relevant enterovirus receptors in mediating subsequent infectivity and transmission, in particular to primary human macrophages. We demonstrate that clustered packaging of viral particles within vesicles enables multiple viral RNA genomes to be collectively transferred into single cells. This study reveals a novel mode of viral transmission, where enteroviral genomes are transmitted from cell-to-cell en bloc in membrane-bound PS vesicles instead of as single independent genomes. This has implications for facilitating genetic cooperativity among viral quasispecies as well as enhancing viral replication.


Asunto(s)
Vesículas Citoplasmáticas/virología , Infecciones por Enterovirus/transmisión , Enterovirus/fisiología , Macrófagos/virología , Vesículas Citoplasmáticas/química , Humanos , Macrófagos/citología , Fosfatidilserinas , Poliovirus/fisiología , ARN Viral/metabolismo , Rhinovirus/fisiología , Replicación Viral
2.
Nature ; 599(7886): 673-678, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34732895

RESUMEN

Immune exclusion predicts poor patient outcomes in multiple malignancies, including triple-negative breast cancer (TNBC)1. The extracellular matrix (ECM) contributes to immune exclusion2. However, strategies to reduce ECM abundance are largely ineffective or generate undesired outcomes3,4. Here we show that discoidin domain receptor 1 (DDR1), a collagen receptor with tyrosine kinase activity5, instigates immune exclusion by promoting collagen fibre alignment. Ablation of Ddr1 in tumours promotes the intratumoral penetration of T cells and obliterates tumour growth in mouse models of TNBC. Supporting this finding, in human TNBC the expression of DDR1 negatively correlates with the intratumoral abundance of anti-tumour T cells. The DDR1 extracellular domain (DDR1-ECD), but not its intracellular kinase domain, is required for immune exclusion. Membrane-untethered DDR1-ECD is sufficient to rescue the growth of Ddr1-knockout tumours in immunocompetent hosts. Mechanistically, the binding of DDR1-ECD to collagen enforces aligned collagen fibres and obstructs immune infiltration. ECD-neutralizing antibodies disrupt collagen fibre alignment, mitigate immune exclusion and inhibit tumour growth in immunocompetent hosts. Together, our findings identify a mechanism for immune exclusion and suggest an immunotherapeutic target for increasing immune accessibility through reconfiguration of the tumour ECM.


Asunto(s)
Colágeno/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Matriz Extracelular/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Escape del Tumor , Animales , Línea Celular Tumoral , Receptor con Dominio Discoidina 1/antagonistas & inhibidores , Receptor con Dominio Discoidina 1/deficiencia , Receptor con Dominio Discoidina 1/genética , Modelos Animales de Enfermedad , Matriz Extracelular/inmunología , Femenino , Eliminación de Gen , Técnicas de Inactivación de Genes , Humanos , Inmunocompetencia/inmunología , Inmunoterapia , Ratones , Linfocitos T/citología , Linfocitos T/inmunología , Neoplasias de la Mama Triple Negativas/terapia
3.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338665

RESUMEN

We report the case of a four-year-old male patient with a complex medical history born prematurely as the result of intrauterine growth restriction due to placental insufficiency. His clinical manifestations included severe neurodevelopmental deficits, global developmental delay, Pierre-Robin sequence, and intractable epilepsy with both generalized and focal features. The proband's low levels of citrulline and lactic acidosis provoked by administration of Depakoke were evocative of a mitochondrial etiology. The proband's genotype-phenotype correlation remained undefined in the absence of nuclear and mitochondrial pathogenic variants detected by deep sequencing of both genomes. However, live-cell mitochondrial metabolic investigations provided evidence of a deficient oxidative-phosphorylation pathway responsible for adenosine triphosphate (ATP) synthesis, leading to chronic energy crisis in the proband. In addition, our metabolic analysis revealed metabolic plasticity in favor of glycolysis for ATP synthesis. Our mitochondrial morphometric analysis by transmission electron microscopy confirmed the suspected mitochondrial etiology, as the proband's mitochondria exhibited an immature morphology with poorly developed and rare cristae. Thus, our results support the concept that suboptimal levels of intrauterine oxygen and nutrients alter fetal mitochondrial metabolic reprogramming toward oxidative phosphorylation (OXPHOS) leading to a deficient postnatal mitochondrial energy metabolism. In conclusion, our collective studies shed light on the long-term postnatal mitochondrial pathophysiology caused by intrauterine growth restriction due to idiopathic placental insufficiency and its negative impact on the energy-demanding development of the fetal and postnatal brain.


Asunto(s)
Retardo del Crecimiento Fetal , Insuficiencia Placentaria , Masculino , Humanos , Femenino , Embarazo , Preescolar , Retardo del Crecimiento Fetal/metabolismo , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/patología , Placenta/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo
4.
Basic Res Cardiol ; 118(1): 43, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37801130

RESUMEN

Altered autonomic balance is a hallmark of numerous cardiovascular diseases, including myocardial infarction (MI). Although device-based vagal stimulation is cardioprotective during chronic disease, a non-invasive approach to selectively stimulate the cardiac parasympathetic system immediately after an infarction does not exist and is desperately needed. Cardiac vagal neurons (CVNs) in the brainstem receive powerful excitation from a population of neurons in the paraventricular nucleus (PVN) of the hypothalamus that co-release oxytocin (OXT) and glutamate to excite CVNs. We tested if chemogenetic activation of PVN-OXT neurons following MI would be cardioprotective. The PVN of neonatal rats was transfected with vectors to selectively express DREADDs within OXT neurons. At 6 weeks of age, an MI was induced and DREADDs were activated with clozapine-N-oxide. Seven days following MI, patch-clamp electrophysiology confirmed the augmented excitatory neurotransmission from PVN-OXT neurons to downstream nuclei critical for parasympathetic activity with treatment (43.7 ± 10 vs 86.9 ± 9 pA; MI vs. treatment), resulting in stark improvements in survival (85% vs. 95%; MI vs. treatment), inflammation, fibrosis assessed by trichrome blue staining, mitochondrial function assessed by Seahorse assays, and reduced incidence of arrhythmias (50% vs. 10% cumulative incidence of ventricular fibrillation; MI vs. treatment). Myocardial transcriptomic analysis provided molecular insight into potential cardioprotective mechanisms, which revealed the preservation of beneficial signaling pathways, including muscarinic receptor activation, in treated animals. These comprehensive results demonstrate that the PVN-OXT network could be a promising therapeutic target to quickly activate beneficial parasympathetic-mediated cellular pathways within the heart during the early stages of infarction.


Asunto(s)
Infarto del Miocardio , Oxitocina , Ratas , Animales , Oxitocina/farmacología , Oxitocina/metabolismo , Ratas Sprague-Dawley , Hipotálamo , Infarto del Miocardio/metabolismo , Neuronas/metabolismo , Arritmias Cardíacas/metabolismo
5.
Anal Chem ; 92(10): 7289-7298, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32314907

RESUMEN

Characterization of the metabolic heterogeneity in cell populations requires the analysis of single cells. Most current methods in single-cell analysis rely on cell manipulation, potentially altering the abundance of metabolites in individual cells. A small sample volume and the chemical diversity of metabolites are additional challenges in single-cell metabolomics. Here, we describe the combination of fiber-based laser ablation electrospray ionization (f-LAESI) with 21 T Fourier transform ion cyclotron resonance mass spectrometry (21TFTICR-MS) for in situ single-cell metabolic profiling in plant tissue. Single plant cells infected by bacteria were selected and sampled directly from the tissue without cell manipulation through mid-infrared ablation with a fine optical fiber tip for ionization by f-LAESI. Ultrahigh performance 21T-FTICR-MS enabled the simultaneous capture of isotopic fine structures (IFSs) for 47 known and 11 unknown compounds, thus elucidating their elemental compositions from single cells and providing information on metabolic heterogeneity in the cell population.


Asunto(s)
Glycine max/citología , Glycine max/metabolismo , Metabolómica , Análisis de la Célula Individual , Bradyrhizobium/metabolismo , Isótopos de Oxígeno , Isótopos de Potasio , Glycine max/microbiología , Espectrometría de Masa por Ionización de Electrospray
6.
Mol Genet Metab ; 126(4): 429-438, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30709774

RESUMEN

In this study, we report the metabolic consequences of the m.1630 A > G variant in fibroblasts from the symptomatic proband affected with the mitochondrial encephalomyopathy lactic acidosis and stroke-like episode Syndrome and her asymptomatic mother. By long-range PCR followed by massively parallel sequencing of the mitochondrial genome, we accurately measured heteroplasmy in fibroblasts from the proband (89.6%) and her mother (94.8%). Using complementary experimental approaches, we show a functional correlation between manifestation of clinical symptoms and bioenergetic potential. Our mitochondrial morphometric analysis reveals a link between defects of mitochondrial cristae ultrastructure and symptomatic status. Despite near-homoplasmic level of the m.1630A > G variant, the mother's fibroblasts have a normal OXPHOS metabolism, which stands in contrast to the severely impaired OXPHOS response of the proband's fibroblasts. The proband's fibroblasts also exhibit glycolysis at near constitutive levels resulting in a stunted compensatory glycolytic response to offset the severe OXPHOS defect. Whole exome sequencing reveals the presence of a heterozygous nonsense VARS2 variant (p.R334X) exclusively in the proband, which removes two thirds of the VARS2 protein containing key domains interacting with the mt-tRNAval and may play a role in modulating the penetrance of the m.1630A > G variant despite similar near homoplasmic levels. Our transmission electron microscopy study also shows unexpected ultrastructural changes of chromatin suggestive of differential epigenomic regulation between the proband and her mother that may explain the differential OXPHOS response between the proband and her mother. Future study will decipher by which molecular mechanisms the nuclear background influences the penetrance of the m.1630 A > G variant causing MELAS.


Asunto(s)
Fibroblastos/patología , Variación Genética , Síndrome MELAS/genética , Madres , Penetrancia , Enfermedades Asintomáticas , Metabolismo Energético , Femenino , Fibroblastos/metabolismo , Genoma Mitocondrial , Glucólisis , Antígenos HLA/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Mitocondrias/patología , Mitocondrias/ultraestructura , Mutación Puntual , Valina-ARNt Ligasa/genética , Adulto Joven
7.
Mol Genet Metab ; 124(1): 71-81, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29602698

RESUMEN

In this study, we report a novel perpective of metabolic consequences for the m.8993T>G variant using fibroblasts from a proband with clinical symptoms compatible with Maternally Inherited Leigh Syndrome (MILS). Definitive diagnosis was corroborated by mitochondrial DNA testing for the pathogenic variant m.8993T>G in MT-ATP6 subunit by Sanger sequencing. The long-range PCR followed by massively parallel sequencing method detected the near homoplasmic m.8993T>G variant at 83% in the proband's fibroblasts and at 0.4% in the mother's fibroblasts. Our results are compatible with very low levels of germline heteroplasmy or an apparent de novo mutation. Our mitochondrial morphometric analysis reveals severe defects in mitochondrial cristae structure in the proband's fibroblasts. Our live-cell mitochondrial respiratory analyses show impaired oxidative phosphorylation with decreased spare respiratory capacity in response to energy stress in the proband's fibroblasts. We detected a diminished glycolysis with a lessened glycolytic capacity and reserve, revealing a stunted ability to switch to glycolysis upon full inhibition of OXPHOS activities. This dysregulated energy reprogramming results in a defective interplay between OXPHOS and glycolysis during an energy crisis. Our study sheds light on the potential pathophysiologic mechanism leading to chronic energy crisis in this MILS patient harboring the m.8993T>G variant.


Asunto(s)
Fibroblastos/metabolismo , Enfermedad de Leigh/genética , Enfermedad de Leigh/fisiopatología , ATPasas de Translocación de Protón Mitocondriales/genética , ADN Mitocondrial/genética , Metabolismo Energético , Femenino , Fibroblastos/citología , Glucólisis , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Enfermedad de Leigh/diagnóstico , Masculino , Mitocondrias/metabolismo , Madres , Mutación , Fosforilación Oxidativa , Linaje , Adulto Joven
8.
Proc Natl Acad Sci U S A ; 112(17): E2253-62, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25877153

RESUMEN

Although inhibition of cyclic nucleotide phosphodiesterase type 3 (PDE3) has been reported to protect rodent heart against ischemia/reperfusion (I/R) injury, neither the specific PDE3 isoform involved nor the underlying mechanisms have been identified. Targeted disruption of PDE3 subfamily B (PDE3B), but not of PDE3 subfamily A (PDE3A), protected mouse heart from I/R injury in vivo and in vitro, with reduced infarct size and improved cardiac function. The cardioprotective effect in PDE3B(-/-) heart was reversed by blocking cAMP-dependent PKA and by paxilline, an inhibitor of mitochondrial calcium-activated K channels, the opening of which is potentiated by cAMP/PKA signaling. Compared with WT mitochondria, PDE3B(-/-) mitochondria were enriched in antiapoptotic Bcl-2, produced less reactive oxygen species, and more frequently contacted transverse tubules where PDE3B was localized with caveolin-3. Moreover, a PDE3B(-/-) mitochondrial fraction containing connexin-43 and caveolin-3 was more resistant to Ca(2+)-induced opening of the mitochondrial permeability transition pore. Proteomics analyses indicated that PDE3B(-/-) heart mitochondria fractions were enriched in buoyant ischemia-induced caveolin-3-enriched fractions (ICEFs) containing cardioprotective proteins. Accumulation of proteins into ICEFs was PKA dependent and was achieved by ischemic preconditioning or treatment of WT heart with the PDE3 inhibitor cilostamide. Taken together, these findings indicate that PDE3B deletion confers cardioprotective effects because of cAMP/PKA-induced preconditioning, which is associated with the accumulation of proteins with cardioprotective function in ICEFs. To our knowledge, our study is the first to define a role for PDE3B in cardioprotection against I/R injury and suggests PDE3B as a target for cardiovascular therapies.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/deficiencia , Daño por Reperfusión Miocárdica , Miocardio/enzimología , Animales , Caveolina 3/genética , Caveolina 3/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/farmacología , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/enzimología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/patología , Inhibidores de Fosfodiesterasa/farmacología , Quinolonas/farmacología
9.
Am J Hematol ; 89(6): 598-603, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24585634

RESUMEN

In preclinical and early phase pharmacologic trials in sickle cell disease, the percentage of sickled erythrocytes after deoxygenation, an ex vivo functional sickling assay, has been used as a measure of a patient's disease outcome. We developed a new sickle imaging flow cytometry assay (SIFCA) and investigated its application. To perform the SIFCA, peripheral blood was diluted, deoxygenated (2% oxygen) for 2 hr, fixed, and analyzed using imaging flow cytometry. We developed a software algorithm that correctly classified investigator tagged "sickled" and "normal" erythrocyte morphology with a sensitivity of 100% and a specificity of 99.1%. The percentage of sickled cells as measured by SIFCA correlated strongly with the percentage of sickle cell anemia blood in experimentally admixed samples (R = 0.98, P ≤ 0.001), negatively with fetal hemoglobin (HbF) levels (R = -0.558, P = 0.027), negatively with pH (R = -0.688, P = 0.026), negatively with pretreatment with the antisickling agent, Aes-103 (5-hydroxymethyl-2-furfural) (R = -0.766, P = 0.002), and positively with the presence of long intracellular fibers as visualized by transmission electron microscopy (R = 0.799, P = 0.002). This study shows proof of principle that the automated, operator-independent SIFCA is associated with predictable physiologic and clinical parameters and is altered by the putative antisickling agent, Aes-103. SIFCA is a new method that may be useful in sickle cell drug development.


Asunto(s)
Anemia de Células Falciformes/sangre , Hipoxia de la Célula/fisiología , Eritrocitos Anormales/patología , Eritrocitos/patología , Anemia de Células Falciformes/patología , Automatización/métodos , Citometría de Flujo/métodos , Humanos , Oxígeno/sangre
10.
Nat Med ; 13(7): 874-9, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17603496

RESUMEN

Here we describe a technique for measuring changes in Ca2+ in the cytosolic domain of mature compact myelin of live axons in the central nervous system (CNS). We label the myelin sheath of optic nerve and dorsal column axons by using the Ca2+ indicator X-rhod-1 coupled with DiOC6(3) to produce bright myelin counterstaining, thereby providing unambiguous identification of the myelin sheath for analysis of two-photon excited fluorescence. We present evidence for localization of the Ca2+ reporter to the cytosolic domain of myelin, obtained by using fluorescence lifetime, spectral measurements and Mn2+ quenching. Chemical ischemia increased myelinic X-rhod-1 fluorescence (approximately 50% after 30 min) in a manner dependent on extracellular Ca2+. Inhibiting Na+-dependent glutamate transporters (with TBOA) or glycine transporters (with sarcosine and ALX-1393) reduced the ischemia-induced increase in Ca2+. We show that myelinic N-methyl-D-aspartate (NMDA) receptors are activated by the two conventional coagonists glutamate and glycine, which are released by specific transporters under conditions of cellular Na+ loading and depolarization in injured white matter. This new technique facilitates detailed studies of living myelin, a vital component of the mammalian CNS.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Sistema Nervioso Central/metabolismo , Vaina de Mielina/metabolismo , Animales , Sistema Nervioso Central/citología , Colorantes Fluorescentes , Microscopía , Neuronas/citología , Ratas , Ratas Long-Evans , Factores de Tiempo
11.
Microsc Microanal ; 20(1): 238-44, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24503289

RESUMEN

Bacterial endospores are resistant to many environmental factors from temperature extremes to ultraviolet irradiation and are generally more difficult to inactivate or kill than vegetative bacterial cells. It is often considered necessary to treat spores or samples containing spores with chemical fixative solutions for prolonged periods of time (e.g., 1-21 days) to achieve fixation/inactivation to enable electron microscopy (EM) examination outside of containment laboratories. Prolonged exposure to chemical fixatives, however, can alter the ultrastructure of spores for EM analyses. This study was undertaken to determine the minimum amount of time required to inactivate/sterilize and fix spore preparations from several bacterial species using a universal fixative solution for EM that maintains the ultrastructural integrity of the spores. We show that a solution of 4% paraformaldehyde with 1% glutaraldehyde inactivated spore preparations of Bacillus anthracis, Bacillus cereus, Bacillus megaterium, Bacillus thuringiensis, and Clostridium perfringens in 30 min, and Bacillus subtilis in 240 min. These results suggest that this fixative solution can be used to inactivate and fix spores from several major groups of bacterial spore formers after 240 min, enabling the fixed preparations to be removed from biocontainment and safely analyzed by EM outside of biocontainment.


Asunto(s)
Bacillus/ultraestructura , Clostridium perfringens/ultraestructura , Viabilidad Microbiana/efectos de los fármacos , Esporas Bacterianas/ultraestructura , Bacillus/efectos de los fármacos , Clostridium perfringens/efectos de los fármacos , Recuento de Colonia Microbiana , Fijadores/farmacología , Formaldehído/farmacología , Glutaral/farmacología , Microscopía Electrónica de Rastreo , Polímeros/farmacología , Esporas Bacterianas/efectos de los fármacos
12.
Arthroplast Today ; 25: 101314, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38317706

RESUMEN

Revision surgery is paramount to cure chronic prosthetic joint infections because these infections are associated with biofilms on prosthetics that conventional antibiotics cannot eradicate. However, there is a paucity of research on where in vivo biofilms are located on infected prosthetics. Consequently, the objective of this pilot study was to address this gap in knowledge by staining 5 chronically infected prosthetics, that were removed at the time of revision surgery, with methylene blue. Scanning electron microscopic images were then taken of the methylene blue-stained areas to visualize biofilms. The findings show that all chronically infected prosthetics had biofilms located on the bone-prosthetic interface, yet only 2 had biofilms also located on the prosthetic interface exposed to synovial fluid. Subsequently, this pilot study provides a pathophysiological understanding of why the current treatment paradigm for chronic periprosthetic joint infection requires a revision surgery and not debridement and an implant retention surgery.

13.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696579

RESUMEN

Rapid self-renewal of the intestinal epithelium requires the activity of intestinal stem cells (ISCs) that are intermingled with Paneth cells (PCs) at the crypt base. PCs provide multiple secreted and surface-bound niche signals and play an important role in the regulation of ISC proliferation. Here, we show that control of PC function by RNA-binding protein HuR via mitochondria affects intestinal mucosal growth by altering ISC activity. Targeted deletion of HuR in mice disrupted PC gene expression profiles, reduced PC-derived niche factors, and impaired ISC function, leading to inhibited renewal of the intestinal epithelium. Human intestinal mucosa from patients with critical surgical disorders exhibited decreased levels of tissue HuR and PC/ISC niche dysfunction, along with disrupted mucosal growth. HuR deletion led to mitochondrial impairment by decreasing the levels of several mitochondrial-associated proteins including prohibitin 1 (PHB1) in the intestinal epithelium, whereas HuR enhanced PHB1 expression by preventing microRNA-195 binding to the Phb1 mRNA. These results indicate that HuR is essential for maintaining the integrity of the PC/ISC niche and highlight a novel role for a defective PC/ISC niche in the pathogenesis of intestinal mucosa atrophy.


Asunto(s)
Proteína 1 Similar a ELAV , MicroARNs , Membrana Mucosa , Células de Paneth , Animales , Humanos , Ratones , Transporte Biológico , Fenómenos Fisiológicos Celulares , Mucosa Intestinal , MicroARNs/genética , Proteínas Mitocondriales , Células Madre , Proteína 1 Similar a ELAV/genética
14.
Res Sq ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333330

RESUMEN

The Ebola virus (EBOV) transcriptional regulation involves host protein phosphatases PP1 and PP2A, which dephosphorylate the transcriptional cofactor of EBOV polymerase VP30. The 1E7-03 compound, which targets PP1, induces VP30 phosphorylation and inhibits EBOV infection. This study aimed to investigate the role of PP1 in EBOV replication. When EBOV-infected cells were continuously treated with 1E7-03, the NP E619K mutation was selected. This mutation moderately reduced EBOV minigenome transcription, which was restored by the treatment with 1E7-03. Formation of EBOV capsids, when NP was co-expressed with VP24 and VP35, was impaired with NPE 619K. Treatment with 1E7-03 restored capsid formation by NP E619K mutation, but inhibited capsids formed by WT NP. The dimerization of NP E619K, tested in a split NanoBiT assay, was significantly decreased (~ 15-fold) compared to WT NP. NP E619K bound more efficiently to PP1 (~ 3-fold) but not B56 subunit of PP2A or VP30. Cross-linking and co-immunoprecipitation experiments showed fewer monomers and dimers for NP E619K which were increased with 1E7-03 treatment. NP E619K showed increased co-localization with PP1α compared to WT NP. Mutations of potential PP1 binding sites and NP deletions disrupted its interaction with PP1. Collectively, our findings suggest that PP1 binding to the NP regulates NP dimerization and capsid formation, and that NP E619K mutation, which has the enhanced PP1 binding, disrupts these processes. Our results point to a new role for PP1 in EBOV replication in which NP binding to PP1 may facilitate viral transcription by delaying capsid formation and EBOV replication.

15.
Proc Natl Acad Sci U S A ; 106(24): 9854-9, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19482936

RESUMEN

Overactivation of NMDA receptors (NMDARs) is a critical early step in glutamate-evoked excitotoxic injury of CNS neurons. Distinct NMDAR-coupled pathways specified by, for example, receptor location or subunit composition seem to govern glutamate-induced excitotoxic death, but there is much uncertainty concerning the underlying mechanisms of pathway selection. Here we ask whether, and if so how, route-specific vulnerability is coupled to Ca(2+) overload and mitochondrial dysfunction, which is also a known, central component of exitotoxic injury. In cultured hippocampal neurons, overactivation of only extrasynaptic NMDARs resulted in Ca(2+) entry strong enough to promote Ca(2+) overload, which subsequently leads to mitochondrial dysfunction and cell death. Receptor composition per se appears not to be a primary factor for specifying signal coupling, as NR2B inhibition abolished Ca(2+) loading and was protective only in predominantly NR2B-expressing young neurons. In older neurons expressing comparable levels of NR2A- and NR2B-containing NMDARs, amelioration of Ca(2+) overload required the inhibition of extrasynaptic receptors containing both NR2 subunits. Prosurvival synaptic stimuli also evoked Ca(2+) entry through both N2A- and NR2B-containing NMDARs, but, in contrast to excitotoxic activation of extrasynaptic NMDARs, produced only low-amplitude cytoplasmic Ca(2+) spikes and modest, nondamaging mitochondrial Ca(2+) accumulation. The results--showing that the various routes of excitotoxic Ca(2+) entry converge on a common pathway involving Ca(2+) overload-induced mitochondrial dysfunction--reconcile and unify many aspects of the "route-specific" and "calcium load-dependent" views of exitotoxic injury.


Asunto(s)
Calcio/metabolismo , Glutamatos/toxicidad , Mitocondrias/metabolismo , Animales , Western Blotting , Células Cultivadas , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Activación del Canal Iónico , Transporte Iónico , Microscopía Electrónica , Microscopía Fluorescente , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
16.
Sci Rep ; 12(1): 2019, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132117

RESUMEN

HIV-1 remains an incurable infection that is associated with substantial economic and epidemiologic impacts. HIV-associated neurocognitive disorders (HAND) are commonly linked with HIV-1 infection; despite the development of combination antiretroviral therapy (cART), HAND is still reported to affect at least 50% of HIV-1 infected individuals. It is believed that the over-amplification of inflammatory pathways, along with release of toxic viral proteins from infected cells, are primarily responsible for the neurological damage that is observed in HAND; however, the underlying mechanisms are not well-defined. Therefore, there is an unmet need to develop more physiologically relevant and reliable platforms for studying these pathologies. In recent years, neurospheres derived from induced pluripotent stem cells (iPSCs) have been utilized to model the effects of different neurotropic viruses. Here, we report the generation of neurospheres from iPSC-derived neural progenitor cells (NPCs) and we show that these cultures are permissive to retroviral (e.g. HIV-1, HTLV-1) replication. In addition, we also examine the potential effects of stem cell derived extracellular vesicles (EVs) on HIV-1 damaged cells as there is abundant literature supporting the reparative and regenerative properties of stem cell EVs in the context of various CNS pathologies. Consistent with the literature, our data suggests that stem cell EVs may modulate neuroprotective and anti-inflammatory properties in damaged cells. Collectively, this study demonstrates the feasibility of NPC-derived neurospheres for modeling HIV-1 infection and, subsequently, highlights the potential of stem cell EVs for rescuing cellular damage induced by HIV-1 infection.


Asunto(s)
Vesículas Extracelulares , Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1 , Células Madre Pluripotentes Inducidas/virología , Células-Madre Neurales/virología , Células Cultivadas , Vesículas Extracelulares/fisiología , Infecciones por VIH/complicaciones , VIH-1/fisiología , Humanos , Trastornos Neurocognitivos/etiología , Neuroprotección , Replicación Viral
18.
JTCVS Open ; 5: 99-107, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33899029

RESUMEN

OBJECTIVE: Mesenchymal stromal cells have important immunomodulatory and neuroprotective properties. The aim of this study was to evaluate the feasibility of mesenchymal stromal cell administration into a cardiopulmonary bypass (CPB) circuit, including a pediatric oxygenator, and to assess the immunomodulatory response of the circulating blood prime. METHODS: A bypass circuit with a pediatric oxygenator, including integral filter was primed with bank whole blood. Normal saline (control) or 120 × 106 mesenchymal stromal cells were injected into the venous reservoir after 80 minutes of perfusion. To assess oxygenator function, immune reaction, and cytokine/chemokine levels, the ex vivo circulation was maintained for 300 minutes after administration. RESULTS: There were no differences in flow rate, trans-oxygenator pressure gradient, blood oxygen, and carbon dioxide levels between control and cell delivery groups. No adhesion of mesenchymal stromal cells was observed on the filter mesh by scanning electron microscopy. Lymphocyte surface marker assay found no difference in the number of B cells, T cells, or natural killer cells between the 2 groups, indicating no immunogenicity of allogeneic mesenchymal stromal cells under ex vivo CPB conditions. CPB significantly changed the level of interleukin (IL) 4, IL-6, IL-8, IP-10, macrophage colony stimulating factor, macrophage inflammatory protein-1ß, monocyte chemoattractant protein-1, and IL-1α over time. IL-6 level was significantly increased after cell administration. CONCLUSIONS: The administration of mesenchymal stromal cells does not interfere with oxygenator function. Allogeneic mesenchymal stromal cells show no immunogenicity, and increase plasma IL-6 level during ex vivo circulation. Further investigation is necessary to determine the effect of mesenchymal stromal cell delivery through CPB during pediatric cardiac surgery.

19.
Front Cell Dev Biol ; 9: 767407, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004675

RESUMEN

In this study, we aimed to establish the mitochondrial etiology of the proband's progressive neurodegenerative disease suggestive of an atypical Leigh syndrome, by determining the proband's pathogenic variants. Brain MRI showed a constellation of multifocal temporally disparate lesions in the cerebral deep gray nuclei, brainstem, cerebellum, spinal cord along with rhombencephalic atrophy, and optic nerve atrophy. Single voxel 1H MRS performed concurrently over the left cerebral deep gray nuclei showed a small lactate peak, increased glutamate and citrate elevation, elevating suspicion of a mitochondrial etiology. Whole exome sequencing revealed three heterozygous nuclear variants mapping in three distinct genes known to cause Leigh syndrome. Our mitochondrial bioenergetic investigations revealed an impaired mitochondrial energy metabolism. The proband's overall ATP deficit is further intensified by an ineffective metabolic reprogramming between oxidative phosphorylation and glycolysis. The deficient metabolic adaptability and global energy deficit correlate with the proband's neurological symptoms congruent with an atypical Leigh syndrome. In conclusion, our study provides much needed insights to support the development of molecular diagnostic and therapeutic strategies for atypical Leigh syndrome.

20.
Cell Biosci ; 11(1): 220, 2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-34953502

RESUMEN

BACKGROUND: Although multiple studies have demonstrated a role for exosomes during virus infections, our understanding of the mechanisms by which exosome exchange regulates immune response during viral infections and affects viral pathogenesis is still in its infancy. In particular, very little is known for cytoplasmic single-stranded RNA viruses such as SARS-CoV-2 and Rift Valley fever virus (RVFV). We have used RVFV infection as a model for cytoplasmic single-stranded RNA viruses to address this gap in knowledge. RVFV is a highly pathogenic agent that causes RVF, a zoonotic disease for which no effective therapeutic or approved human vaccine exist. RESULTS: We show here that exosomes released from cells infected with RVFV (designated as EXi-RVFV) serve a protective role for the host and provide a mechanistic model for these effects. Our results show that treatment of both naïve immune cells (U937 monocytes) and naïve non-immune cells (HSAECs) with EXi-RVFV induces a strong RIG-I dependent activation of IFN-B. We also demonstrate that this strong anti-viral response leads to activation of autophagy in treated cells and correlates with resistance to subsequent viral infection. Since we have shown that viral RNA genome is associated with EXi-RVFV, RIG-I activation might be mediated by the presence of packaged viral RNA sequences. CONCLUSIONS: Using RVFV infection as a model for cytoplasmic single-stranded RNA viruses, our results show a novel mechanism of host protection by exosomes released from infected cells (EXi) whereby the EXi activate RIG-I to induce IFN-dependent activation of autophagy in naïve recipient cells including monocytes. Because monocytes serve as reservoirs for RVFV replication, this EXi-RVFV-induced activation of autophagy in monocytes may work to slow down or halt viral dissemination in the infected organism. These findings offer novel mechanistic insights that may aid in future development of effective vaccines or therapeutics, and that may be applicable for a better molecular understanding of how exosome release regulates innate immune response to other cytoplasmic single-stranded RNA viruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA