Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Gut ; 65(1): 144-54, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25516417

RESUMEN

OBJECTIVE: Inflammation and oxidative stress drive disease progression in chronic hepatitis C (CHC) towards hepatocellular carcinoma. HCV is known to increase intracellular levels of reactive oxygen species (ROS), but how it eliminates ROS is less well known. The role of the ROS scavenger glutathione peroxidase 4 (GPx4), induced by HCV, in the viral life cycle was analysed. DESIGN: The study was performed using a replicative in vitro HCV infection model and liver biopsies derived from two different CHC patient cohorts. RESULTS: A screen for HCV-induced peroxide scavengers identified GPx4 as a host factor required for HCV infection. The physiological role of GPx4 is the elimination of lipid peroxides from membranes or lipoproteins. GPx4-silencing reduced the specific infectivity of HCV by up to 10-fold. Loss of infectivity correlated with 70% reduced fusogenic activity of virions in liposome fusion assays. NS5A was identified as the protein that mediates GPx4 induction in a phosphatidylinositol-3-kinase-dependent manner. Levels of GPx4 mRNA were found increased in vitro and in CHC compared with control liver biopsies. Upon successful viral eradication, GPx4 transcript levels returned to baseline in vitro and also in the liver of patients. CONCLUSIONS: HCV induces oxidative stress but controls it tightly by inducing ROS scavengers. Among these, GPx4 plays an essential role in the HCV life cycle. Modulating oxidative stress in CHC by specifically targeting GPx4 may lower specific infectivity of virions and prevent hepatocarcinogenesis, especially in patients who remain difficult to be treated in the new era of interferon-free regimens.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Hepacivirus/patogenicidad , Hepatitis C Crónica/virología , Peroxidación de Lípido , Hígado/virología , Virión/patogenicidad , Adulto , Biomarcadores , Biopsia , Estudios de Casos y Controles , Línea Celular , Femenino , Cromatografía de Gases y Espectrometría de Masas , Hepacivirus/metabolismo , Hepatitis C Crónica/enzimología , Hepatitis C Crónica/patología , Humanos , Hígado/enzimología , Hígado/patología , Masculino , Persona de Mediana Edad , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Especies Reactivas de Oxígeno/metabolismo , Virión/metabolismo
2.
Recent Results Cancer Res ; 207: 1-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27557532

RESUMEN

One of the prerequisites for cell growth and proliferation is the synthesis of macromolecules, including proteins, nucleic acids and lipids. Cells have to alter their metabolism to allow the production of metabolic intermediates that are the precursors for biomass production. It is now evident that oncogenic signalling pathways target metabolic processes on several levels and metabolic reprogramming has emerged as a hallmark of cancer. The increased metabolic demand of cancer cells also produces selective dependencies that could be targeted for therapeutic intervention. Understanding the role of glucose and lipid metabolism in supporting cancer cell growth and survival is crucial to identify essential processes that could provide therapeutic windows for cancer therapy.


Asunto(s)
Proliferación Celular/fisiología , Glucosa/metabolismo , Metabolismo de los Lípidos/fisiología , Neoplasias/metabolismo , Neoplasias/fisiopatología , Humanos , Transducción de Señal/fisiología
3.
J Pathol ; 237(2): 152-65, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25965974

RESUMEN

Metabolic reprogramming in cancer enhances macromolecule biosynthesis and supports cell survival. Oncogenic drivers affect metabolism by altering distinct metabolic processes and render cancer cells sensitive to perturbations of the metabolic network. This study aimed to identify selective metabolic dependencies in breast cancer by investigating 17 breast cancer cells lines representative of the genetic diversity of the disease. Using a functional screen, we demonstrate here that monocarboxylate transporter 4 (MCT4) is an important regulator of breast cancer cell survival. MCT4 supports pH maintenance, lactate secretion and non-oxidative glucose metabolism in breast cancer cells. Moreover, MCT4 depletion caused an increased dependence of cancer cells on mitochondrial respiration and glutamine metabolism. MCT4 depletion reduced the ability of breast cancer cells to grow in a three-dimensional (3D) matrix or as multilayered spheroids. Moreover, MCT4 expression is regulated by the PI3K-Akt signalling pathway and highly expressed in HER2-positive breast cancers. These results suggest that MCT4 is a potential therapeutic target in defined breast cancer subtypes and reveal novel avenues for combination treatment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Metabolismo Energético , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Animales , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Supervivencia Celular , Técnicas de Cocultivo , Femenino , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Células MCF-7 , Ratones Desnudos , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Receptor ErbB-2/metabolismo , Transducción de Señal , Esferoides Celulares , Factores de Tiempo , Transfección , Carga Tumoral
4.
Viruses ; 5(3): 954-80, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23518579

RESUMEN

Chronic hepatitis C is characterized by metabolic disorders and a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that lead in the long term to hepatocellular carcinoma. Many lines of evidence suggest that mitochondrial dysfunctions, including modification of metabolic fluxes, generation and elimination of oxidative stress, Ca2+ signaling and apoptosis, play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory, probably due to the use of artificial expression and replication systems. In vivo studies are hampered by the fact that innate and adaptive immune responses will overlay mitochondrial dysfunctions induced directly in the hepatocyte by HCV. Thus, the molecular aspects underlying HCV-induced mitochondrial dysfunctions and their roles in viral replication and the associated pathology need yet to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C Crónica/metabolismo , Mitocondrias/metabolismo , Animales , Hepacivirus/genética , Hepatitis C Crónica/virología , Humanos , Hígado/metabolismo , Hígado/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA