Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Pharmacol Toxicol ; 63: 517-540, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36202091

RESUMEN

Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.


Asunto(s)
Exposición a Riesgos Ambientales , Exposoma , Embarazo , Lactante , Femenino , Humanos , Preescolar , Exposición a Riesgos Ambientales/efectos adversos , Xenobióticos/toxicidad , Desarrollo Fetal
2.
Brain ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501612

RESUMEN

The paralysis of the muscles controlling the hand dramatically limits the quality of life of individuals living with spinal cord injury (SCI). Here, with a non-invasive neural interface, we demonstrate that eight motor complete SCI individuals (C5-C6) are still able to task-modulate in real-time the activity of populations of spinal motor neurons with residual neural pathways. In all SCI participants tested, we identified groups of motor units under voluntary control that encoded various hand movements. The motor unit discharges were mapped into more than 10 degrees of freedom, ranging from grasping to individual hand-digit flexion and extension. We then mapped the neural dynamics into a real-time controlled virtual hand. The SCI participants were able to match the cue hand posture by proportionally controlling four degrees of freedom (opening and closing the hand and index flexion/extension). These results demonstrate that wearable muscle sensors provide access to spared motor neurons that are fully under voluntary control in complete cervical SCI individuals. This non-invasive neural interface allows the investigation of motor neuron changes after the injury and has the potential to promote movement restoration when integrated with assistive devices.

3.
Environ Sci Technol ; 58(5): 2236-2246, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38252460

RESUMEN

Mycotoxins are toxic chemicals that adversely affect human health. Here, we assessed the influence of mycotoxin exposure on the longitudinal development of early life intestinal microbiota of Nigerian neonates and infants (NIs). Human biomonitoring assays based on liquid chromatography tandem mass spectrometry were applied to quantify mycotoxins in breast milk (n = 68) consumed by the NIs, their stool (n = 82), and urine samples (n = 15), which were collected longitudinally from month 1-18 postdelivery. Microbial community composition was characterized by 16S rRNA gene amplicon sequencing of stool samples and was correlated to mycotoxin exposure patterns. Fumonisin B1 (FB1), FB2, and alternariol monomethyl ether (AME) were frequently quantified in stool samples between months 6 and 18. Aflatoxin M1 (AFM1), AME, and citrinin were quantified in breast milk samples at low concentrations. AFM1, FB1, and ochratoxin A were quantified in urine samples at relatively high concentrations. Klebsiella and Escherichia/Shigella were dominant in very early life stool samples (month 1), whereas Bifidobacterium was dominant between months 3 and 6. The total mycotoxin levels in stool were significantly associated with NIs' gut microbiome composition (PERMANOVA, p < 0.05). However, no significant correlation was observed between specific microbiota and the detection of certain mycotoxins. Albeit a small cohort, this study demonstrates that mycotoxins may influence early life gut microbiome composition.


Asunto(s)
Microbioma Gastrointestinal , Micotoxinas , Lactante , Recién Nacido , Femenino , Humanos , Micotoxinas/orina , Monitoreo Biológico , ARN Ribosómico 16S , Espectrometría de Masas en Tándem/métodos , Contaminación de Alimentos/análisis
4.
Anal Bioanal Chem ; 414(25): 7503-7516, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34932144

RESUMEN

Infants are sensitive to negative effects caused by food contaminants such as mycotoxins. To date, analytical methods assessing mycotoxin mixture exposure in infant stool are absent. Herein, we present a novel multi-mycotoxin LC-MS/MS assay capable of detecting 30+ analytes including the regulated mycotoxin classes (aflatoxins, trichothecenes, ochratoxins, zearalenone, citrinin), emerging Alternaria and Fusarium toxins, and several key metabolites. Sample preparation consisted of a 'dilute, filter, and shoot' approach. The method was in-house validated and demonstrated that 25 analytes fulfilled all required criteria despite the high diversity of chemical structures included. Extraction recoveries for most of the analytes were in the range of 65-114% with standard deviations below 30% and limits of detection between 0.03 and 11.3 ng/g dry weight. To prove the methods' applicability, 22 human stool samples from premature Austrian infants (n = 12) and 12-month-old Nigerian infants (n = 10) were analyzed. The majority of the Nigerian samples were contaminated with alternariol monomethyl ether (8/10) and fumonisin B1 (8/10), while fumonisin B2 and citrinin were quantified in some samples. No mycotoxins were detected in any of the Austrian samples. The method can be used for sensitive human biomonitoring (HBM) purposes and to support exposure and, potentially, risk assessment of mycotoxins. Moreover, it allows for investigating potential associations between toxicant exposure and the infants' developing gut microbiome.


Asunto(s)
Aflatoxinas , Citrinina , Fumonisinas , Ocratoxinas , Tricotecenos , Zearalenona , Aflatoxinas/análisis , Cromatografía Liquida/métodos , Citrinina/análisis , Contaminación de Alimentos/análisis , Fumonisinas/análisis , Humanos , Lactante , Ocratoxinas/análisis , Espectrometría de Masas en Tándem/métodos , Tricotecenos/análisis , Zearalenona/análisis
5.
Anal Chem ; 91(17): 11334-11342, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31398002

RESUMEN

We are constantly exposed to a variety of environmental contaminants and hormones, including those mimicking endogenous estrogens. These highly heterogeneous molecules are collectively referred to as xenoestrogens and hold the potential to affect and alter the delicate hormonal balance of the human body. To monitor exposure and investigate potential health implications, comprehensive analytical methods covering all major xenoestrogen classes are needed but not available to date. Herein, we describe a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of multiple classes of endogenous as well as exogenous estrogens in human urine, serum, and breast milk to enable proper exposure and risk assessment. In total, 75 analytes were included, whereof a majority was successfully in-house validated in the three matrices. Extraction recoveries of validated analytes ranged from 71% to 110% and limits of quantification from 0.015 to 5 µg/L, 0.03 to 14 µg/L, and 0.03 to 4.6 µg/L in urine, serum, and breast milk, respectively. The applicability of the novel method was demonstrated in proof-of-principle experiments by analyzing urine from Austrian individuals and breast milk from Austrian and Nigerian individuals. Thereby, we proved the methods' feasibility to identify and quantify different classes of xenoestrogens simultaneously. The results illustrate the general importance of multiclass exposure assessment in the context of the exposome paradigm. Specifically, they highlight the need for estimating total estrogenic burden rather than single analyte or chemical class measurements and its potential impact in endocrine disruption and hormone related diseases including cancers.


Asunto(s)
Estrógenos/análisis , Exposoma , Xenobióticos/análisis , Austria , Cromatografía Liquida/métodos , Disruptores Endocrinos/análisis , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Estrógenos/orina , Humanos , Leche Humana/química , Nigeria , Medición de Riesgo , Espectrometría de Masas en Tándem/métodos
6.
Arch Toxicol ; 93(11): 3153-3167, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31641809

RESUMEN

Despite the frequent infection of agricultural crops by Alternaria spp., their toxic secondary metabolites and potential food contaminants lack comprehensive metabolic characterization. In this study, we investigated their bioavailability, metabolism, and excretion in vivo. A complex Alternaria culture extract (50 mg/kg body weight) containing 11 known toxins and the isolated lead toxin altertoxin II (0.7 mg/kg body weight) were administered per gavage to groups of 14 Sprague Dawley rats each. After 3 h and 24 h, plasma, urine and feces were collected to determine toxin recoveries. For reliable quantitation, an LC-MS/MS method for the simultaneous detection of 20 Alternaria toxins and metabolites was developed and optimized for either biological matrix. The obtained results demonstrated efficient excretion of alternariol (AOH) and its monomethyl ether (AME) via feces (> 89%) and urine (> 2.6%) after 24 h, while the majority of tenuazonic acid was recovered in urine (20 and 87% after 3 and 24 h, respectively). Moreover, modified forms of AOH and AME were identified in urine and fecal samples confirming both, mammalian phase-I (4-hydroxy-AOH) and phase-II (sulfates) biotransformation in vivo. Despite the comparably high doses, perylene quinones were recovered only at very low levels (altertoxin I, alterperylenol, < 0.06% in urine and plasma, < 5% in feces) or not at all (highly genotoxic, epoxide-holding altertoxin II, stemphyltoxin III). Interestingly, altertoxin I was detected in all matrices of rats receiving altertoxin II and suggests enzymatic de-epoxidation in vivo. In conclusion, the present study contributes valuable information to advance our understanding of the emerging Alternaria mycotoxins and their relevance on food safety.


Asunto(s)
Alternaria/química , Benzo(a)Antracenos/metabolismo , Micotoxinas/metabolismo , Alternaria/crecimiento & desarrollo , Animales , Benzo(a)Antracenos/sangre , Benzo(a)Antracenos/aislamiento & purificación , Benzo(a)Antracenos/orina , Disponibilidad Biológica , Temperatura Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Cromatografía Liquida , Ingestión de Alimentos/efectos de los fármacos , Heces/química , Contaminación de Alimentos/análisis , Límite de Detección , Masculino , Tasa de Depuración Metabólica , Fase I de la Desintoxicación Metabólica , Fase II de la Desintoxicación Metabólica , Micotoxinas/sangre , Micotoxinas/aislamiento & purificación , Micotoxinas/orina , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Distribución Tisular
7.
Anal Chem ; 90(24): 14569-14577, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30449087

RESUMEN

Infants are particularly susceptible toward the toxic effects of food contaminants, including mycotoxins. However, multimycotoxin exposure assessment in breast milk has received very limited attention so far, resulting in a poor understanding of coexposures during early life. Here, we present the development and application of a highly sensitive, specific, and quantitative assay assessing up to 28 mycotoxins, including regulated (aflatoxins, ochratoxin A, deoxynivalenol, zearalenone) and emerging mycotoxins as well as key metabolites by LC-MS/MS. After careful optimization of the sample preparation procedure, a QuEChERS protocol combined with a freeze-out step was validated in-house. The limits of quantification varied between 0.009 and 2.9 ng/mL, and for most analytes extraction recovery (74-116%) and intermediate precision (2-20%) were satisfactory. The method was applied to examine multiple breast milk samples obtained from 22 women ( n = 75 in total) from Ogun State, Nigeria. Most samples were either entirely free of mycotoxins or contaminated to a minimal extent with beauvericin (56%), enniatin B (9%), ochratoxin A (15%), and aflatoxin M1 (1%). The most abundant mycotoxin was beauvericin, which was not reported in this biological fluid before, with concentrations up to 0.019 ng/mL. In conclusion, the method demonstrated to be fit for purpose to determine and quantify low background contaminations in human breast milk. On the basis of the high sensitivity of the novel analytical method, it was possible to deduce that tolerable daily intake values were not exceeded by breastfeeding in the examined infants.


Asunto(s)
Leche Humana/metabolismo , Micotoxinas/análisis , Espectrometría de Masas en Tándem , Aflatoxinas/análisis , Cromatografía Líquida de Alta Presión , Humanos , Lactante , Límite de Detección , Leche Humana/química , Ocratoxinas/análisis
8.
Arch Toxicol ; 91(3): 1447-1460, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27401186

RESUMEN

Mycotoxins are toxic secondary metabolites formed by various fungal species that are found as natural contaminants in food. This very heterogeneous group of compounds triggers multiple toxic mechanisms, including endocrine disruptive potential. Current risk assessment of mycotoxins, as for most chemical substances, is based on the effects of single compounds. However, concern on a potential enhancement of risks by interactions of single substances in naturally occurring mixtures has greatly increased recently. In this study, the combinatory effects of three mycoestrogens were investigated in detail. This includes the endocrine disruptors zearalenone (ZEN) and α-zearalenol (α-ZEL) produced by Fusarium fungi and alternariol (AOH), a cytotoxic and estrogenic mycotoxin formed by Alternaria species. For evaluation of effects, estrogen-dependent activation of alkaline phosphatase (AlP) and cell proliferation were tested in the adenocarcinoma cell line Ishikawa. The estrogenic potential varied among the single substances. Half maximum effect concentrations (EC50) for AlP activation were evaluated for α-ZEL, ZEN and AOH as 37 pM, 562 pM and 995 nM, respectively. All three mycotoxins were found to act as partial agonists. The majority of binary combinations, even at very low concentrations in the case of α-ZEL, showed strong synergism in the AlP assay. These potentiating phenomena of mycotoxin mixtures highlight the urgent need to incorporate combinatory effects into future risk assessment, especially when endocrine disruptors are involved. To the best of our knowledge, this study presents the first investigation on synergistic effects of mycoestrogens.


Asunto(s)
Estrógenos/toxicidad , Lactonas/toxicidad , Zearalenona/toxicidad , Zeranol/análogos & derivados , Fosfatasa Alcalina/metabolismo , Alternaria/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Fusarium/química , Humanos , Lactonas/administración & dosificación , Micotoxinas/toxicidad , Pruebas de Toxicidad/métodos , Zearalenona/administración & dosificación , Zeranol/administración & dosificación , Zeranol/toxicidad
9.
Chem Res Toxicol ; 29(7): 1087-97, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27300310

RESUMEN

Human breast milk is considered as the best and ideal form of nutrition for infants. However, food contaminants such as mycotoxins, which may be transferred from maternal blood to milk, are poorly described. Mycotoxins are a major group of natural toxins frequently detected in foods. Here, we review the current state-of-the-art in the monitoring of mycotoxins in human breast milk, i.e., knowledge on occurrence, metabolism, and analytical assays utilized for their quantification. We highlight that most of the data captured to date have not been verified with the precision now capable utilizing LC-MS/MS and LC-HRMS approaches. One concern is that some studies may overestimate individual measures, and most cannot capture the patterns and levels of mycotoxin mixtures. We propose accurate assessment as a priority, especially for aflatoxins, fumonisins, ochratoxin A, zearalenone, and deoxynivalenol as well as their major metabolites. However, also so-called emerging toxins such as citrinin, the enniatins, beauvericin, aurofusarin, or Alternaria toxins should be considered to evaluate their potential relevance. Key requirements for analytical quality assurance are identified and discussed to guide future developments in this area. Moreover, research needs including investigations of lactational transfer rates, the role of human metabolism for bioactivation or detoxification, and an evaluation of potential combinatory effects of different mycotoxins are pointed out. It is hoped that LC-MS based multianalyte methods will enable more accurate, rapid and affordable human biomonitoring approaches that support informed decisions for maternal and infant health.


Asunto(s)
Monitoreo del Ambiente , Leche Humana/química , Micotoxinas/análisis , Cromatografía Liquida , Exposición a Riesgos Ambientales , Humanos , Límite de Detección , Espectrometría de Masas
10.
IEEE Trans Biomed Eng ; PP2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042539

RESUMEN

OBJECTIVE: Surface electromyography (sEMG) can sense the motor commands transmitted to the muscles. This work presents a deep learning method that can decode the electrophysiological activity of the forearm muscles into the movements of the human hand. METHODS: We have recorded the kinematics and kinetics of the hand during a wide range of grasps and individual digit movements that cover 22 degrees of freedom of the hand at slow (0.5 Hz) and comfortable (1.5 Hz) movement speeds in 13 healthy participants. The input of the model consists of 320 non-invasive EMG sensors placed on the extrinsic hand muscles. RESULTS: Our network achieves accurate continuous estimation of both kinematics and kinetics, surpassing the performance of comparable networks reported in the literature. By examining the latent space of the network, we find evidence that it mapped EMG activity into the anatomy of the hand at the individual digit level. In contrast to what is observed from the low-pass filtered EMG and linear decoding approaches, we found that the full-bandwidth EMG (monopolar unfiltered) signals during synergistic and individual digit movements contain distinct neural embeddings that encode each movement of the human hand. These manifolds consistently represent the anatomy of the hand and are generalized across participants. Moreover, we found a task-specific distribution of the embeddings without any presence of correlated activations during multi- and individual-digit tasks. CONCLUSION/SIGNIFICANCE: The proposed method could advance the control of assistive hand devices by providing a robust and intuitive interface between muscle signals and hand movements.

11.
Food Chem Toxicol ; 182: 114173, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925015

RESUMEN

This study assessed the levels of environment and food-related exposures in urine of Austrian school children aged six to ten (n = 85) focusing on mycotoxins, phytoestrogens, and food processing by-products using two multi-analyte LC-MS/MS methods. Out of the 55 biomarkers of exposure reported in this study, 22 were quantified in the first void urine samples. Mycotoxins frequently quantified included zearalenone (detection rate 100%; median 0.11 ng/mL), deoxynivalenol (99%; 15 ng/mL), alternariol monomethyl ether (75%; 0.04 ng/mL), and ochratoxin A (19%; 0.03 ng/mL). Several phytoestrogens, including genistein, daidzein, and its metabolite equol, were detected in all samples at median concentrations of 22 ng/mL, 43 ng/mL, and 14 ng/mL, respectively. The food processing by-product 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was detected in 4% of the samples (median 0.016 ng/mL). None of the investigated samples contained the tested phytotoxins that were rarely considered for human biomonitoring previously (pyrrolizidine alkaloids, tropane alkaloids, aristolochic acids). When relating estimated exposure to current health-based guidance values, 22% of the children exceeded the tolerable daily intake for deoxynivalenol, and the estimated MOE for OTA indicates possible health risks for some children. The results clearly demonstrate frequent low-level (co-)exposure and warrant further exposome-scale exposure assessments, especially in susceptible sub-populations and longitudinal settings.


Asunto(s)
Alcaloides , Micotoxinas , Niño , Humanos , Fitoestrógenos , Monitoreo Biológico , Cromatografía Liquida , Austria , Espectrometría de Masas en Tándem/métodos , Manipulación de Alimentos , Contaminación de Alimentos/análisis
12.
Int J Hyg Environ Health ; 249: 114123, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36738493

RESUMEN

In 85 Austrian school children aged 6-10 years, two multi-analyte LC-MS/MS methods were used to study the concentrations of 33 chemical substances in urine, including per- and polyfluorinated alkylated substances (PFAS), bisphenols, parabens, benzophenones, triclosan, polycyclic aromatic hydrocarbon metabolites, and cotinine. Each of the children was exposed to 14-21 substances simultaneously. Correlations were found between compounds of the same and of divergent substance groups supporting the strong need to consider multiple exposures and mixture effects. Eight compounds, including perfluorohexanoic acid (PFHxA), perfluorononanoic acid (PFOA), methyl paraben (n-MeP), ethyl paraben (n-EtP), propyl paraben (n-PrP), benzophenone-1 (BP-1), 2-naphthol, and 3-hydroxyphenanthrene were detected in all urine samples. In the PFAS group the medians of detectable substances ranged between <0.0005 µg/l for perfluorononanoic acid (PFNA) and 0.004 µg/l for PFHxA. For other environmental contaminants investigated, a maximum urinary level of 893 µg/l was identified for n-MeP. The highest median value was 2.5 µg/l for 2-naphthol. Daily intakes were calculated for bisphenol A (BPA), triclosan (TCS), and four parabens. These values did not exceed the tolerable or acceptable daily intakes currently in force. Based on a recently proposed TDI for BPA, daily intakes of all children exceeded this value. A cumulative risk assessment was conducted for four parabens not showing exceedances of acceptable exposures. The results demonstrate simultaneous exposure to several different chemicals, with the majority showing impact on the endocrine system being of particular concern with respect to mixture effects. Further assessments with a stronger focus on mixtures are warranted. The results also highlight the need of policy actions as foreseen in the EU Chemicals Strategy for Sustainability.


Asunto(s)
Fluorocarburos , Triclosán , Humanos , Niño , Parabenos/metabolismo , Triclosán/orina , Monitoreo Biológico , Xenobióticos , Cromatografía Liquida , Austria , Espectrometría de Masas en Tándem , Compuestos de Bencidrilo/orina , Exposición a Riesgos Ambientales/análisis
13.
Anal Chim Acta ; 1216: 339977, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35691679

RESUMEN

Establishing a method for human biomonitoring (HBM) of polyphenols enables the assessment of internal concentrations of these food bio-actives and the correlation with potential health effects such as antioxidant or anti-inflammatory properties. Thus, a targeted LC-MS/MS method for quantifying up to 90 analytes, representing the main polyphenol classes including flavanones, isoflavones, stilbenes, and phenolic acids, was developed for human urine, serum, and plasma. The method was established for low sample volumes and with a cost and time efficient sample preparation protocol for high-throughput, which is critical for its application in large cohort and exposome-wide association studies. On average, the sample preparation yielded extraction efficiencies of 98% for urine, 98% for serum, and 87% for plasma. Limits of detection were between 0.11 ng mL-1 and 300 ng mL-1 for urine, 0.12 ng mL-1 and 190 ng mL-1 for serum, and 0.12 ng mL-1 and 340 ng mL-1 for plasma, excluding one analyte. In-house validation revealed that 66, 49, and 64 analytes for urine, serum, and plasma, respectively, fulfilled all stringent requirements, that are usually utilized for tailored single analyte methods, at all evaluated concentration levels. After validation, this method was applied in a proof-of-principle study that detected 39 polyphenols in urine. Changes in the concentrations of the analytes after the ingestion of a high polyphenol smoothie was examined over 24 h. The study further confirmed that the majority of polyphenols detected were phenolic acids, and phase II conjugated metabolites were more abundant than their respective non-conjugated forms.


Asunto(s)
Polifenoles , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Humanos , Límite de Detección , Espectrometría de Masas en Tándem/métodos
14.
Nat Commun ; 13(1): 2653, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550507

RESUMEN

Exposure to synthetic and natural chemicals is a major environmental risk factor in the etiology of many chronic diseases. Investigating complex co-exposures is necessary for a holistic assessment in exposome-wide association studies. In this work, a sensitive liquid chromatography-tandem mass spectrometry approach was developed and validated. The assay enables the analysis of more than 80 highly-diverse xenobiotics in urine, serum/plasma, and breast milk; with detection limits generally in the pg-ng mL-1 range. In plasma of extremely-premature infants, 27 xenobiotics are identified; including contamination with plasticizers, perfluorinated alkylated substances and parabens. In breast milk samples collected longitudinally over the first 211 days post-partum, 29 analytes are detected, including pyrrolizidine- and tropane alkaloids which have not been identified in this matrix before. A preliminary estimation of daily toxicant intake via breast milk is conducted. In conclusion, we observe significant early-life co-exposure to multiple toxicants, and demonstrate the method's applicability for large-scale exposomics-type cohort studies.


Asunto(s)
Exposoma , Monitoreo Biológico , Niño , Desarrollo Infantil , Femenino , Humanos , Lactante , Recién Nacido , Espectrometría de Masas en Tándem/métodos , Xenobióticos/toxicidad
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 702-706, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086496

RESUMEN

Natural control of assistive devices requires continuous positional encoding and decoding of the user's volition. Human movement is encoded by recruitment and rate coding of spinal motor units. Surface electromyography provides some information on the neural code of movement and is usually decoded into finger joint angles. However, the current approaches to mapping the electrical signal into joint angles are unsatisfactory. There are no methods that allow precise estimation of joint angles during natural hand movements within the large numbers of degrees of freedom of the hand. We propose a framework to train a neural network from digital cameras and high-density surface electromyography from the extrinsic (forearm and wrist) hand muscles. Furthermore, we show that our 3D convolutional neural network optimally predicted 14 functional flexion/extension joints of the hand. We found in our experiments (4 subjects; mean age of 26±2.12 years) that our model can predict individual sinusoidal finger movement at different speeds (0.5 and 1.5 Hz), as well as two and three finger pinching, and hand opening and closing, covering 14 degrees of freedom of the hand. Our deep learning method shows a mean absolute error of 2.78±0.28 degrees with a mean correlation coefficient between predicted and expected joint angles of 0.94, 95% confidence interval (CI) [0.81, 0.98] with simulated real-time inference times lower than 30 milliseconds. These results demonstrate that our approach is capable of predicting the user's volition similar to digital cameras through a non-invasive wearable neural interface. Clinical relevance- This method establishes a viable interface that can be used for both immersive virtual reality medical simulations environments and assistive devices such as exoskeleton and prosthetics.


Asunto(s)
Aprendizaje Profundo , Adulto , Electromiografía/métodos , Dedos/fisiología , Mano/fisiología , Humanos , Movimiento/fisiología , Adulto Joven
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4115-4118, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085754

RESUMEN

The human hand possesses a large number of degrees of freedom. Hand dexterity is encoded by the discharge times of spinal motor units (MUs). Most of our knowledge on the neural control of movement is based on the discharge times of MUs during isometric contractions. Here we designed a noninvasive framework to study spinal motor neurons during dynamic hand movements with the aim to understand the neural control of MUs during sinusoidal hand digit flexion and extension at different rates of force development. The framework included 320 high-density surface EMG electrodes placed on the forearm muscles, with markerless 3D hand kinematics extracted with deep learning, and a realistic virtual hand that displayed the motor tasks. The movements included flexion and extension of individual hand digits at two different speeds (0.5 Hz and 1.5 Hz) for 40 seconds. We found on average 4.7±1.7 MUs across participants and tasks. Most MUs showed a biphasic pattern closely mirroring the flexion and extension kinematics. Indeed, a factor analysis method (non-negative matrix factorization) was able to learn the two components (flexion/extension) with high accuracy at the individual MU level ( R=0.87±0.12). Although most MUs were highly correlated with either flexion or extension movements, there was a smaller proportion of MUs that was not task-modulated and controlled by a different neural module (7.1% of all MUs with ). This work shows a noninvasive visually guided framework to study motor neurons controlling the movement of the hand in human participants during dynamic hand digit movements.


Asunto(s)
Mano , Extremidad Superior , Dedos , Humanos , Neuronas Motoras , Movimiento
17.
Front Toxicol ; 4: 977147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353200

RESUMEN

Mycotoxins produced by Alternaria spp. act genotoxic in cell-based studies, but data on their toxicity in vivo is scarce and urgently required for risk assessment. Thus, male Sprague-Dawley rats received single doses of a complex Alternaria toxin extract (CE; 50 mg/kg bw), altertoxin II (ATX-II; 0.21 mg/kg bw) or vehicle by gavage, one of the most genotoxic metabolites in vitro and were sacrificed after 3 or 24 h, respectively. Using SDS-PAGE/Western Blot, a significant increase of histone 2a.X phosphorylation and depletion of the native protein was observed for rats that were exposed to ATX-II for 24 h. Applying RT-PCR array technology we identified genes of interest for qRT-PCR testing, which in turn confirmed an induction of Rnf8 transcription in the colon of rats treated with ATX-II for 3 h and CE for 24 h. A decrease of Cdkn1a transcription was observed in rats exposed to ATX-II for 24 h, possibly indicating tissue repair after chemical injury. In contrast to the observed response in the colon, no markers for genotoxicity were induced in the liver of treated animals. We hereby provide the first report of ATX-II as a genotoxicant in vivo. Deviating results for similar concentrations of ATX-II in a natural Alternaria toxin mixture argue for substantial mixture effects.

18.
Chemosphere ; 287(Pt 2): 132226, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826919

RESUMEN

Exposure to food and environmental contaminants is a global environmental health issue. In this study, innovative LC-MS/MS approaches were applied to investigate mycotoxin co-exposure in mother-infant pairs (n = 23) by analyzing matched plate-ready food, breast milk and urine samples of mothers and their exclusively breastfed infants. The study revealed frequent co-occurrence of two to five mycotoxins. Regulated (e.g. aflatoxins, deoxynivalenol and ochratoxin A) and emerging mycotoxins (e.g. alternariol monomethyl ether and beauvericin) were frequently detected (3 %-89 % and 45 %-100 %), in at least one specimen. In addition, a moderate association of ochratoxin A in milk to urine of mothers (r = 0.47; p = 0.003) and infants (r = 0.52; p = 0.019) but no other significant correlations were found. Average concentration levels in food mostly did not exceed European maximum residue limits, and intake estimates demonstrated exposure below tolerable daily intake values. Infants were exposed to significantly lower toxin levels compared to their mothers, indicating the protective effect of breastfeeding. However, the transfer into milk and urine and the resulting chronic low-dose exposure warrant further monitoring. In the future, occurrence of mycotoxin-mixtures, and their combined toxicological effects need to be comprehensively considered and implemented in risk management strategies. These should aim to minimize early-life exposure in critical developmental stages.


Asunto(s)
Madres , Micotoxinas , Cromatografía Liquida , Femenino , Contaminación de Alimentos/análisis , Humanos , Lactante , Micotoxinas/análisis , Nigeria , Espectrometría de Masas en Tándem
19.
Environ Int ; 158: 106996, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991256

RESUMEN

A multi-specimen, multi-mycotoxin approach involving ultra-sensitive LC-MS/MS analysis of breast milk, complementary food and urine was applied to examine mycotoxin co-exposure in 65 infants, aged 1-18 months, in Ogun state, Nigeria. Aflatoxin M1 was detected in breast milk (4/22 (18%)), while six other classes of mycotoxins were quantified; including dihydrocitrinone (6/22 (27%); range: 14.0-59.7 ng/L) and sterigmatocystin (1/22 (5%); 1.2 ng/L) detected for the first time. Seven distinct classes of mycotoxins including aflatoxins (9/42 (21%); range: 1.0-16.2 µg/kg) and fumonisins (12/42 (29%); range: 7.9-194 µg/kg) contaminated complementary food. Mycotoxins covering seven distinct classes with diverse structures and modes of action were detected in 64/65 (99%) of the urine samples, demonstrating ubiquitous exposure. Two aflatoxin metabolites (AFM1 and AFQ1) and FB1 were detected in 6/65 (9%), 44/65 (68%) and 17/65 (26%) of urine samples, respectively. Mixtures of mycotoxin classes were common, including 22/22 (100%), 14/42 (33%) and 56/65 (86%) samples having 2-6, 2-4, or 2-6 mycotoxins present, for breast milk, complementary food and urine, respectively. Aflatoxin and/or fumonisin was detected in 4/22 (18%), 12/42 (29%) and 46/65 (71%) for breast milk, complimentary foods and urine, respectively. Furthermore, the detection frequency, median concentrations and occurrence of mixtures were typically greater in urine of non-exclusively breastfed compared to exclusively breastfed infants. The study provides novel insights into mycotoxin co-exposures in early-life. Albeit a small sample set, it highlights transition to higher levels of infant mycotoxin exposure as complementary foods are introduced, providing impetus to mitigate during this critical early-life period and encourage breastfeeding.


Asunto(s)
Citrinina , Micotoxinas , Monitoreo Biológico , Biomarcadores , Lactancia Materna , Niño , Cromatografía Liquida , Femenino , Contaminación de Alimentos/análisis , Humanos , Lactante , Leche Humana/química , Nigeria , Espectrometría de Masas en Tándem
20.
Annu Rev Food Sci Technol ; 12: 461-484, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33351643

RESUMEN

Polyphenols are generally known for their health benefits and estimating actual exposure levels in health-related studies can be improved by human biomonitoring. Here, the application of newly available exposomic and metabolomic technology, notably high-resolution mass spectrometry, in the context of polyphenols and their biotransformation products, is reviewed. Comprehensive workflows for investigating these important bioactives in biological fluids or microbiome-related experiments are scarce. Consequently, this new era of nontargeted analysis and omic-scale exposure assessment offers a unique chance for better assessing exposure to, as well as metabolism of, polyphenols. In clinical and nutritional trials, polyphenols can be investigated simultaneously with the plethora of other chemicals to which we are exposed, i.e., the exposome, which may interact abundantly and modulate bioactivity. This research direction aims at ultimately eluting into atrue systems biology/toxicology evaluation of health effects associated with polyphenol exposure, especially during early life, to unravel their potential for preventing chronic diseases.


Asunto(s)
Metabolómica , Polifenoles , Humanos , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA