Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Immunol ; 25(1): 88-101, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38012415

RESUMEN

Few cancers can be targeted efficiently by engineered T cell strategies. Here, we show that γδ T cell antigen receptor (γδ TCR)-mediated cancer metabolome targeting can be combined with targeting of cancer-associated stress antigens (such as NKG2D ligands or CD277) through the addition of chimeric co-receptors. This strategy overcomes suboptimal γ9δ2 TCR engagement of αß T cells engineered to express a defined γδ TCR (TEGs) and improves serial killing, proliferation and persistence of TEGs. In vivo, the NKG2D-CD28WT chimera enabled control only of liquid tumors, whereas the NKG2D-4-1BBCD28TM chimera prolonged persistence of TEGs and improved control of liquid and solid tumors. The CD277-targeting chimera (103-4-1BB) was the most optimal co-stimulation format, eradicating both liquid and solid tumors. Single-cell transcriptomic analysis revealed that NKG2D-4-1BBCD28TM and 103-4-1BB chimeras reprogram TEGs through NF-κB. Owing to competition with naturally expressed NKG2D in CD8+ TEGs, the NKG2D-4-1BBCD28TM chimera mainly skewed CD4+ TEGs toward adhesion, proliferation, cytotoxicity and less exhausted signatures, whereas the 103-4-1BB chimera additionally shaped the CD8+ subset toward a proliferative state.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Perfilación de la Expresión Génica
2.
J Biol Chem ; 299(2): 102896, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36639026

RESUMEN

We found previously that nuclear receptors (NRs) compete for heterodimerization with their common partner, retinoid X receptor (RXR), in a ligand-dependent manner. To investigate potential competition in their DNA binding, we monitored the mobility of retinoic acid receptor (RAR) and vitamin D receptor (VDR) in live cells by fluorescence correlation spectroscopy. First, specific agonist treatment and RXR coexpression additively increased RAR DNA binding, while both agonist and RXR were required for increased VDR DNA binding, indicating weaker DNA binding of the VDR/RXR dimer. Second, coexpression of RAR, VDR, and RXR resulted in competition for DNA binding. Without ligand, VDR reduced the DNA-bound fraction of RAR and vice versa, i.e., a fraction of RXR molecules was occupied by the competing partner. The DNA-bound fraction of either RAR or VDR was enhanced by its own and diminished by the competing NR's agonist. When treated with both ligands, the DNA-bound fraction of RAR increased as much as due to its own agonist, whereas that of VDR increased less. RXR agonist also increased DNA binding of RAR at the expense of VDR. In summary, competition between RAR and VDR for RXR is also manifested in their DNA binding in an agonist-dependent manner: RAR dominates over VDR in the absence of agonist or with both agonists present. Thus, side effects of NR-ligand-based (retinoids, thiazolidinediones) therapies may be ameliorated by other NR ligands and be at least partly explained by reduced DNA binding due to competition. Our results also complement the model of NR action by involving competition both for RXR and for DNA sites.


Asunto(s)
Receptores de Calcitriol , Receptores de Ácido Retinoico , Receptores X Retinoide , ADN/metabolismo , Ligandos , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares , Receptores X Retinoide/química , Receptores X Retinoide/metabolismo , Tretinoina/farmacología , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/metabolismo
3.
Mol Cancer ; 21(1): 166, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986270

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous and aggressive blood cancer that results from diverse genetic aberrations in the hematopoietic stem or progenitor cells (HSPCs) leading to the expansion of blasts in the hematopoietic system. The heterogeneity and evolution of cancer blasts can render therapeutic interventions ineffective in a yet poorly understood patient-specific manner. In this study, we investigated the clonal heterogeneity of diagnosis (Dx) and relapse (Re) pairs at genetic and transcriptional levels, and unveiled the underlying pathways and genes contributing to recurrence. METHODS: Whole-exome sequencing was used to detect somatic mutations and large copy number variations (CNVs). Single cell RNA-seq was performed to investigate the clonal heterogeneity between Dx-Re pairs and amongst patients. RESULTS: scRNA-seq analysis revealed extensive expression differences between patients and Dx-Re pairs, even for those with the same -presumed- initiating events. Transcriptional differences between and within patients are associated with clonal composition and evolution, with the most striking differences in patients that gained large-scale copy number variations at relapse. These differences appear to have significant molecular implications, exemplified by a DNMT3A/FLT3-ITD patient where the leukemia switched from an AP-1 regulated clone at Dx to a mTOR signaling driven clone at Re. The two distinct AML1-ETO pairs share genes related to hematopoietic stem cell maintenance and cell migration suggesting that the Re leukemic stem cell-like (LSC-like) cells evolved from the Dx cells. CONCLUSIONS: In summary, the single cell RNA data underpinned the tumor heterogeneity not only amongst patient blasts with similar initiating mutations but also between each Dx-Re pair. Our results suggest alternatively and currently unappreciated and unexplored mechanisms leading to therapeutic resistance and AML recurrence.


Asunto(s)
Variaciones en el Número de Copia de ADN , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación , Recurrencia , Análisis de la Célula Individual , Transcriptoma , Tirosina Quinasa 3 Similar a fms/genética
4.
Anal Chem ; 92(2): 2207-2215, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31870146

RESUMEN

Single Plane Illumination Microscopy (SPIM) revolutionized time lapse imaging of live cells and organisms due to its high speed and reduced photodamage. Quantitative mapping of molecular (co)mobility by fluorescence (cross-)correlation spectroscopy (F(C)CS) in a SPIM has been introduced to reveal molecular diffusion and binding. A complementary aspect of interactions is proximity, which can be studied by Förster resonance energy transfer (FRET). Here, we extend SPIM-FCCS by alternating laser excitation, which reduces false positive cross-correlation and facilitates comapping of FRET. Thus, different aspects of interacting systems can be studied simultaneously, and molecular subpopulations can be discriminated by multiparameter analysis. After demonstrating the benefits of the method on the AP-1 transcription factor, the dimerization and DNA binding behavior of retinoic acid receptor (RAR) and retinoid X receptor (RXR) is revealed, and an extension of the molecular switch model of the nuclear receptor action is proposed. Our data imply that RAR agonist enhances RAR-RXR heterodimerization, and chromatin binding/dimerization are positively correlated. We also propose a ligand induced conformational change bringing the N-termini of RAR and RXR closer together. The RXR agonist increased homodimerization of RXR suggesting that RXR may act as an autonomous transcription factor.


Asunto(s)
ADN/química , Receptores de Ácido Retinoico/química , Receptores X Retinoide/química , Sitios de Unión , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Microscopía Fluorescente , Receptores de Ácido Retinoico/agonistas , Células Tumorales Cultivadas
5.
Nat Commun ; 15(1): 2133, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459022

RESUMEN

Many countries continue to experience pertussis epidemics despite widespread vaccination. Waning protection after booster vaccination has highlighted the need for a better understanding of the immunological factors that promote durable protection. Here we apply systems vaccinology to investigate antibody responses in adolescents in the Netherlands (N = 14; NL) and the United Kingdom (N = 12; UK) receiving a tetanus-diphtheria-acellular pertussis-inactivated poliovirus (Tdap-IPV) vaccine. We report that early antiviral and interferon gene expression signatures in blood correlate to persistence of pertussis-specific antibody responses. Single-cell analyses of the innate response identified monocytes and myeloid dendritic cells (MoDC) as principal responders that upregulate antiviral gene expression and type-I interferon cytokine production. With public data, we show that Tdap vaccination stimulates significantly lower antiviral/type-I interferon responses than Tdap-IPV, suggesting that IPV may promote antiviral gene expression. Subsequent in vitro stimulation experiments demonstrate TLR-dependent, IPV-specific activation of the pro-inflammatory p38 MAP kinase pathway in MoDCs. Together, our data provide insights into the molecular host response to pertussis booster vaccination and demonstrate that IPV enhances innate immune activity associated with persistent, pertussis-specific antibody responses.


Asunto(s)
Vacunas contra Difteria, Tétanos y Tos Ferina Acelular , Difteria , Poliovirus , Tétanos , Tos Ferina , Adolescente , Humanos , Bordetella pertussis , Inmunidad Humoral , Tos Ferina/prevención & control , Difteria/prevención & control , Vacunas Combinadas , Anticuerpos Antibacterianos , Vacuna Antipolio de Virus Inactivados , Vacunación , Inmunización Secundaria , Corynebacterium , Interferones , Antivirales
6.
J Cell Sci ; 124(Pt 21): 3631-42, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22045737

RESUMEN

The retinoic acid receptor (RAR) is a member of the nuclear receptor superfamily. This ligand-inducible transcription factor binds to DNA as a heterodimer with the retinoid X receptor (RXR) in the nucleus. The nucleus is a dynamic compartment and live-cell imaging techniques make it possible to investigate transcription factor action in real-time. We studied the diffusion of EGFP-RAR by fluorescence correlation spectroscopy (FCS) to uncover the molecular interactions determining receptor mobility. In the absence of ligand, we identified two distinct species with different mobilities. The fast component has a diffusion coefficient of D(1)=1.8-6.0 µm(2)/second corresponding to small oligomeric forms, whereas the slow component with D(2)=0.05-0.10 µm(2)/second corresponds to interactions of RAR with the chromatin or other large structures. The RAR ligand-binding-domain fragment also has a slow component, probably as a result of indirect DNA-binding through RXR, with lower affinity than the intact RAR-RXR complex. Importantly, RAR-agonist treatment shifts the equilibrium towards the slow population of the wild-type receptor, but without significantly changing the mobility of either the fast or the slow population. By using a series of mutant forms of the receptor with altered DNA- or coregulator-binding capacity we found that the slow component is probably related to chromatin binding, and that coregulator exchange, specifically the binding of the coactivator complex, is the main determinant contributing to the redistribution of RAR during ligand activation.


Asunto(s)
Células/metabolismo , Cromatina/metabolismo , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/metabolismo , Espectrometría de Fluorescencia/métodos , Imagen de Lapso de Tiempo/métodos , Células/química , Células/citología , Cromatina/química , Células HeLa , Humanos , Cinética , Unión Proteica , Receptores de Ácido Retinoico/genética , Receptores X Retinoide/química , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo
7.
Nat Biotechnol ; 41(1): 60-69, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35879361

RESUMEN

Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000 engineered T cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising T cells with potent serial killing capacity. Among other T cell concepts we also study cancer metabolome-sensing engineered T cells (TEGs) and detect behavior-specific gene signatures that include a group of 27 genes with no previously described T cell function that are expressed by super engager killer TEGs. We further show that type I interferon can prime resistant organoids for TEG-mediated killing. BEHAV3D is a promising tool for the characterization of behavioral-phenotypic heterogeneity of cellular immunotherapies and may support the optimization of personalized solid-tumor-targeting cell therapies.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Neoplasias/genética , Neoplasias/terapia , Inmunoterapia/métodos , Organoides/patología
8.
Front Oncol ; 12: 965168, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046044

RESUMEN

Pheochromocytoma, neuroendocrine tumor, single cell RNA-sequencing, transcriptome, heterogeneity, SDHB, RET, paraganglinoma; Pheochromocytomas (PC) and paragangliomas (PG) are rare neuroendocrine tumors with varied genetic makeup and are associated with high cardiovascular morbidity and a variable risk of malignancy. The source of the transcriptional heterogeneity of the disease and the underlying biological processes that determine the outcome of PCPG remain largely unclear. We focused on PCPG tumors with germline SDHB and RET mutations, which represent distinct prognostic groups with worse or better prognoses, respectively. We applied single-nuclei RNA sequencing (snRNA-seq) to tissue samples from 11 patients and found high patient-to-patient transcriptome heterogeneity in neuroendocrine tumor cells. The tumor microenvironment also showed heterogeneous profiles, mainly contributed by macrophages of the immune cell clusters and Schwann cells of the stroma. By performing non-negative matrix factorization, we identified common transcriptional programs active in RET and SDHB, as well as distinct modules, including neuronal development, hormone synthesis and secretion, and DNA replication. Similarities between the transcriptomes of the tumor cells and those of the chromaffin- and precursor cell types suggests different developmental stages at which PC and PG tumors appear to be arrested.

9.
Nat Commun ; 13(1): 4920, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995787

RESUMEN

Celiac disease is an autoimmune disorder in which ingestion of dietary gluten triggers an immune reaction in the small intestine leading to destruction of the lining epithelium. Current treatment focusses on lifelong adherence to a gluten-free diet. Gluten-specific CD4+ T cells and cytotoxic intraepithelial CD8+ T cells have been proposed to be central in disease pathogenesis. Here we use unbiased single-cell RNA-sequencing and explore the heterogeneity of CD45+ immune cells in the human small intestine. We show altered myeloid cell transcriptomes present in active celiac lesions. CD4+ and CD8+ T cells transcriptomes show extensive changes and we define a natural intraepithelial lymphocyte population that is reduced in celiac disease. We show that the immune landscape in Celiac patients on a gluten-free diet is only partially restored compared to control samples. Altogether, we provide a single cell transcriptomic resource that can inform the immune landscape of the small intestine during Celiac disease.


Asunto(s)
Enfermedad Celíaca , Linfocitos T CD8-positivos , Glútenes , Humanos , Intestino Delgado , Transcriptoma
10.
Psychopharmacology (Berl) ; 236(5): 1653-1670, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31119329

RESUMEN

RATIONALE: Mycobacterium vaccae (NCTC 11659) is an environmental saprophytic bacterium with anti-inflammatory, immunoregulatory, and stress resilience properties. Previous studies have shown that whole, heat-killed preparations of M. vaccae prevent allergic airway inflammation in a murine model of allergic asthma. Recent studies also demonstrate that immunization with M. vaccae prevents stress-induced exaggeration of proinflammatory cytokine secretion from mesenteric lymph node cells stimulated ex vivo, prevents stress-induced exaggeration of chemically induced colitis in a model of inflammatory bowel disease, and prevents stress-induced anxiety-like defensive behavioral responses. Furthermore, immunization with M. vaccae induces anti-inflammatory responses in the brain and prevents stress-induced exaggeration of microglial priming. However, the molecular mechanisms underlying anti-inflammatory effects of M. vaccae are not known. OBJECTIVES: Our objective was to identify and characterize novel anti-inflammatory molecules from M. vaccae NCTC 11659. METHODS: We have purified and identified a unique anti-inflammatory triglyceride, 1,2,3-tri [Z-10-hexadecenoyl] glycerol, from M. vaccae and evaluated its effects in freshly isolated murine peritoneal macrophages. RESULTS: The free fatty acid form of 1,2,3-tri [Z-10-hexadecenoyl] glycerol, 10(Z)-hexadecenoic acid, decreased lipopolysaccharide-stimulated secretion of the proinflammatory cytokine IL-6 ex vivo. Meanwhile, next-generation RNA sequencing revealed that pretreatment with 10(Z)-hexadecenoic acid upregulated genes associated with peroxisome proliferator-activated receptor alpha (PPARα) signaling in lipopolysaccharide-stimulated macrophages, in association with a broad transcriptional repression of inflammatory markers. We confirmed using luciferase-based transfection assays that 10(Z)-hexadecenoic acid activated PPARα signaling, but not PPARγ, PPARδ, or retinoic acid receptor (RAR) α signaling. The effects of 10(Z)-hexadecenoic acid on lipopolysaccharide-stimulated secretion of IL-6 were prevented by PPARα antagonists and absent in PPARα-deficient mice. CONCLUSION: Future studies should evaluate the effects of 10(Z)-hexadecenoic acid on stress-induced exaggeration of peripheral inflammatory signaling, central neuroinflammatory signaling, and anxiety- and fear-related defensive behavioral responses.


Asunto(s)
Antiinflamatorios/inmunología , Antiinflamatorios/aislamiento & purificación , Mycobacterium/inmunología , Mycobacterium/aislamiento & purificación , Estrés Psicológico/inmunología , Estrés Psicológico/prevención & control , Animales , Ansiedad/inducido químicamente , Ansiedad/inmunología , Ansiedad/prevención & control , Colitis/inducido químicamente , Colitis/inmunología , Colitis/prevención & control , Miedo/efectos de los fármacos , Miedo/fisiología , Inflamación/inmunología , Inflamación/prevención & control , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/inmunología , Microbiología del Suelo , Estrés Psicológico/inducido químicamente
11.
Biophys J ; 94(7): 2859-68, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18065450

RESUMEN

The activator protein-1 transcription factor is a heterodimer containing one of each of the Fos and Jun subfamilies of basic-region leucine-zipper proteins. We have previously shown by fluorescence cross-correlation spectroscopy (FCCS) that the fluorescent fusion proteins Fos-EGFP and Jun-mRFP1, cotransfected in HeLa cells, formed stable complexes in situ. Here we studied the relative position of the C-terminal domains via fluorescence resonance energy transfer (FRET) measured by flow cytometry and confocal microscopy. To get a more detailed insight into the conformation of the C-terminal domains of the complex we constructed C-terminal labeled full-length and truncated forms of Fos. We developed a novel iterative evaluation method to determine accurate FRET efficiencies regardless of relative protein expression levels, using a spectral- or intensity-based approach. The full-length C-terminal-labeled Jun and Fos proteins displayed a FRET-measured average distance of 8 +/- 1 nm. Deletion of the last 164 amino acids at the C-terminus of Fos resulted in a distance of 6.1 +/- 1 nm between the labels. FCCS shows that Jun-mRFP1 and the truncated Fos-EGFP also interact stably in the nucleus, although they bind to nuclear components with lower affinity. Thus, the C-terminal end of Fos may play a role in the stabilization of the interaction between activator protein-1 and DNA. Molecular dynamics simulations predict a dye-to-dye distance of 6.7 +/- 0.1 nm for the dimer between Jun-mRFP1 and the truncated Fos-EGFP, in good agreement with our FRET data. A wide variety of models could be developed for the full-length dimer, with possible dye-to-dye distances varying largely between 6 and 20 nm. However, from our FRET results we can conclude that more than half of the occurring dye-to-dye distances are between 6 and 10 nm.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Proteínas Proto-Oncogénicas c-fos/química , Proteínas Proto-Oncogénicas c-fos/ultraestructura , Proteínas Proto-Oncogénicas c-jun/química , Sitios de Unión , Simulación por Computador , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HeLa , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Proto-Oncogénicas c-jun/ultraestructura , Espectrometría de Fluorescencia/métodos
12.
Methods Mol Biol ; 1624: 237-252, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28842888

RESUMEN

Studying the dynamics of intracellular processes and investigating the interaction of individual macromolecules in live cells is one of the main objectives of cell biology. These macromolecules move, assemble, disassemble, and reorganize themselves in distinct manners under specific physiological conditions throughout the cell cycle. Therefore, in vivo experimental methods that enable the study of individual molecules inside cells at controlled culturing conditions have proved to be powerful tools to obtain insights into the molecular roles of these macromolecules and how their individual behavior influence cell physiology. The importance of controlled experimental conditions is enhanced when the investigated phenomenon covers long time periods, or perhaps multiple cell cycles. An example is the detection and quantification of proteins during bacterial DNA replication. Wide-field microscopy combined with microfluidics is a suitable technique for this. During fluorescence experiments, microfluidics offer well-defined cellular orientation and immobilization, flow and medium interchangeability, and high-throughput long-term experimentation of cells. Here we present a protocol for the combined use of wide-field microscopy and microfluidics for the study of proteins of the Escherichia coli DNA replication process. We discuss the preparation and application of a microfluidic device, data acquisition steps, and image analysis procedures to determine the stoichiometry and dynamics of a replisome component throughout the cell cycle of live bacterial cells.


Asunto(s)
ADN Bacteriano/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Microfluídica/métodos , Ciclo Celular , Replicación del ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Imagen Óptica , Imagen Individual de Molécula
13.
Mol Cell Biol ; 34(7): 1234-45, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24449763

RESUMEN

Retinoid X receptor (RXR) is a promiscuous nuclear receptor forming heterodimers with several other receptors, which activate different sets of genes. Upon agonist treatment, the occupancy of its genomic binding regions increased, but only a modest change in the number of sites was revealed by chromatin immunoprecipitation followed by sequencing, suggesting a rather static behavior. However, such genome-wide and biochemical approaches do not take into account the dynamic behavior of a transcription factor. Therefore, we characterized the nuclear dynamics of RXR during activation in single cells on the subsecond scale using live-cell imaging. By applying fluorescence recovery after photobleaching and fluorescence correlation spectroscopy (FCS), techniques with different temporal and spatial resolutions, a highly dynamic behavior could be uncovered which is best described by a two-state model (slow and fast) of receptor mobility. In the unliganded state, most RXRs belonged to the fast population, leaving ∼ 15% for the slow, chromatin-bound fraction. Upon agonist treatment, this ratio increased to ∼ 43% as a result of an immediate and reversible redistribution. Coactivator binding appears to be indispensable for redistribution and has a major contribution to chromatin association. A nuclear mobility map recorded by light sheet microscopy-FCS shows that the ligand-induced transition from the fast to the slow population occurs throughout the nucleus. Our results support a model in which RXR has a distinct, highly dynamic nuclear behavior and follows hit-and-run kinetics upon activation.


Asunto(s)
Receptores X Retinoide/metabolismo , Sitios de Unión/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Cinética , Ligandos , Modelos Biológicos , Compuestos Orgánicos/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptores X Retinoide/agonistas , Receptores X Retinoide/genética , Análisis de la Célula Individual , Espectrometría de Fluorescencia
14.
J Biol Chem ; 281(33): 23812-23, 2006 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16785230

RESUMEN

ABCG2, a member of the ATP-binding cassette transporters has been identified as a protective pump against endogenous and exogenous toxic agents. ABCG2 was shown to be expressed at high levels in stem cells and variably regulated during cell differentiation. Here we demonstrate that functional ABCG2 is expressed in human monocyte-derived dendritic cells by the activation of a nuclear hormone receptor, PPARgamma. We identified and characterized a 150-base pair long conserved enhancer region, containing three functional PPAR response elements (PPARE), upstream of the human ABCG2 gene. We confirmed the binding of the PPARgamma x RXR heterodimer to this enhancer region, suggesting that PPARgamma directly regulates the transcription of ABCG2. Consistent with these results, elevated expression of ABCG2 mRNA was coupled to enhanced protein production, resulting in increased xenobiotic extrusion capacity via ABCG2 in PPARgamma-activated cells. Furthermore PPARgamma instructed dendritic cells showed increased Hoechst dye extrusion and resistance to mitoxantrone. Collectively, these results uncovered a mechanism by which up-regulation of functional ABCG2 expression can be achieved via exogenous or endogenous activation of the lipid-activated transcription factor, PPARgamma. The increased expression of the promiscuous ABCG2 transporter can significantly modify the xenobiotic and drug resistance of human myeloid dendritic cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/fisiología , Citoprotección/fisiología , Células Dendríticas/citología , Células Dendríticas/metabolismo , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/fisiología , PPAR gamma/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/genética , Animales , Secuencia de Bases , Bovinos , Perros , Resistencia a Antineoplásicos , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , PPAR gamma/agonistas , Fenotipo , Regulación hacia Arriba/fisiología , Xenobióticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA