RESUMEN
Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.
Asunto(s)
Encéfalo , Organoides , Humanos , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Matriz Extracelular/metabolismo , Células Madre Pluripotentes/metabolismo , Prosencéfalo/citología , Técnicas de Cultivo de Tejidos , Células Madre/metabolismo , MorfogénesisRESUMEN
Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Atención a la Salud/métodos , Atención a la Salud/tendencias , Medicina/métodos , Medicina/tendencias , Patología , Análisis de la Célula Individual , Inteligencia Artificial , Atención a la Salud/ética , Atención a la Salud/normas , Diagnóstico Precoz , Educación Médica , Europa (Continente) , Femenino , Salud , Humanos , Legislación Médica , Masculino , Medicina/normasRESUMEN
This commentary outlines challenges with identifying and implementing ethical, legal and societal considerations when initiating large-scale scientific programs and suggests best practices to ensure responsible research.
Asunto(s)
Discusiones Bioéticas , Investigación Biomédica/ética , HumanosRESUMEN
Exposome research is put forward as a major tool for solving the nature-versus-nurture debate because the exposome is said to represent "the nature of nurture." Against this influential idea, we argue that the adoption of the nature-versus-nurture debate into the exposome research program is a mistake that needs to be undone to allow for a proper bioethical assessment of exposome research. We first argue that this adoption is originally based on an equivocation between the traditional nature-versus-nurture debate and a debate about disease prediction/etiology. Second, due to this mistake, exposome research is pushed to adopt a limited conception of agential control that is harmful to one's thinking about the good that exposome research can do for human health and wellbeing. To fully excise the nature-versus-nurture debate from exposome research, we argue that exposome researchers and bioethicists need to think about the exposome afresh from the perspective of actionability. We define the concept of actionability and related concepts and show how these can be used to analyze the ethical aspects of the exposome. In particular, we focus on refuting the popular "gun analogy" in exposome research, returning results to study participants and risk-taking in the context of a well-lived life.
Asunto(s)
Exposición a Riesgos Ambientales , Exposoma , HumanosRESUMEN
The development of gene therapy has always come with the expectation that it will offer a cure for various disorders, of which hemophilia is a paradigm example. However, although the term is used regularly, it is unclear what exactly is meant with "cure". Therefore, the aim of this paper is to analyse how the concept of cure is used in practice and evaluate which of the interpretations is most suitable in discussions surrounding gene therapy. We analysed how cure is used in four different medical fields where the concept raises discussion. We show that cure can be used in three different ways: cure as normalization of the body, cure as obtaining a normal life, or cure as a change in identity. We argue that since cure is a practical term, its interpretation should be context-specific and the various uses can exist simultaneously, as long as their use is suitable to the function the notion of cure plays in each of the settings. We end by highlighting three different settings in the domain of hemophilia gene therapy in which the term cure is used and explore the function(s) it serves in each setting. We conclude that in the clinical application of gene therapy, it could be better to abandon the term cure, whereas more modest and specified definitions of cure are required in the context of health resource allocation decisions and decisions on research funding.
Asunto(s)
Terapia Genética , Hemofilia A , Humanos , Terapia Genética/ética , Hemofilia A/terapia , Filosofía MédicaRESUMEN
Recent advancements in developmental biology enable the creation of embryo-like structures from human stem cells, which we refer to as human embryo-like structures (hELS). These structures provide promising tools to complement-and perhaps ultimately replace-the use of human embryos in clinical and fundamental research. But what if these hELS-when further improved-also have a claim to moral status? What would that imply for their research use? In this paper, we explore these questions in relation to the traditional answer as to why human embryos should be given greater protection than other (non-)human cells: the so-called Argument from Potential (AfP). According to the AfP, human embryos deserve special moral status because they have the unique potential to develop into persons. While some take the development of hELS to challenge the very foundations of the AfP, the ongoing debate suggests that its dismissal would be premature. Since the AfP is a spectrum of views with different moral implications, it does not need to imply that research with human embryos or hELS that (may) have 'active' potential should be completely off-limits. However, the problem with determining active potential in hELS is that this depends on development passing through 'potentiality switches' about the precise coordinates of which we are still in the dark. As long as this epistemic uncertainty persists, extending embryo research regulations to research with specific types of hELS would amount to a form of regulative precaution that as such would require further justification.
Asunto(s)
Comienzo de la Vida Humana , Investigaciones con Embriones , Humanos , Incertidumbre , alfa-Fetoproteínas , Obligaciones Morales , Embrión de MamíferosRESUMEN
Regenerative Medicine promises to develop treatments to regrow healthy tissues and cure the physical body. One of the emerging developments within this field is regenerative implants, such as jawbone or heart valve implants, that can be broken down by the body and are gradually replaced with living tissue. Yet challenges for embodiment are to be expected, given that the implants are designed to integrate deeply into the tissue of the living body, so that implant and body become one. In this paper, we explore how regenerative implants may affect the embodied experience of implant recipients. To this end, we take a phenomenological approach. First, we explore what insights the existing phenomenological and empirical literature on embodiment offers regarding the experience of illness and of living with regular (non-regenerative) implants and organ transplants. Second, we apply these insights to better understand how future implant recipients might experience living with regenerative implants. Third, we conclude that concepts and considerations from the existing phenomenological literature do not sufficiently address what it might be like to live with an implantable technology that, over time, becomes one with the living body. We argue that the interwovenness and intimate relationship of people living with regenerative implants should be understood in terms of 'entanglement'. Entanglement allows us to explore the complexities of human-technology relations, acknowledging the inseparability of humans and implantable technologies. Our theoretical foundations regarding the role of embodiment may be tested empirically once more people will be living with regenerative implants.
Asunto(s)
Medicina Regenerativa , Humanos , Prótesis e Implantes , Filosofía MédicaRESUMEN
Organoids are three-dimensional multicellular structures grown in vitro from stem cells and which recapitulate some organ function. They are derivatives of living tissue that can be stored in biobanks for a multitude of research purposes. Biobank research on organoids derived from patients is highly promising for precision medicine, which aims to target treatment to individual patients. The dominant approach for protecting the interests of biobank participants emphasizes broad consent in combination with privacy protection and ex ante (predictive) ethics review. In this paradigm, participants are positioned as passive donors; however, organoid biobanking for precision medicine purposes raises challenges that we believe cannot be adequately addressed without more ongoing involvement of patient-participants. In this Spotlight, we argue why a shift from passive donation towards more active involvement is particularly crucial for biobank research on organoids aimed at precision medicine, and suggest some approaches appropriate to this context.
Asunto(s)
Organoides/citología , Medicina de Precisión/ética , Medicina de Precisión/métodos , Bancos de Muestras Biológicas/ética , Participación de la Comunidad , Donación Directa de Tejido/ética , Donación Directa de Tejido/tendencias , Necesidades y Demandas de Servicios de Salud , Humanos , Técnicas de Cultivo de Tejidos/ética , Técnicas de Cultivo de Tejidos/métodosRESUMEN
Gene drive technologies (GDTs) have been proposed as a potential new way to alleviate the burden of malaria, yet have also raised ethical questions. A central ethical question regarding GDTs relates to whether it is morally permissible to intentionally modify or eradicate mosquitoes in this way and how the inherent worth of humans and non-human organisms should be factored into determining this. Existing analyses of this matter have thus far generally relied on anthropocentric and zoocentric perspectives and rejected an individualist biocentric outlook in which all living organisms are taken to matter morally for their own sake. In this paper, we reconsider the implications of taking a biocentric approach and highlight nuances that may not be evident at first glance. First, we shortly discuss biocentric perspectives in general, and then outline Paul Taylor's biocentric theory of respect for nature. Second, we explore how conflicting claims towards different organisms should be prioritised from this perspective and subsequently apply this to the context of malaria control using GDTs. Our ethical analysis shows that this context invokes the principle of self-defence, which could override the pro tanto concerns that a biocentrist would have against modifying malaria mosquitoes in this way if certain conditions are met. At the same time, the case study of GDTs underlines the relevance of previously posed questions and criticism regarding the internal consistency of Taylor's egalitarian biocentrism.
RESUMEN
Despite widespread and worldwide efforts to eradicate vector-borne diseases such as malaria, these diseases continue to have an enormous negative impact on public health. For this reason, scientists are working on novel control strategies, such as gene drive technologies (GDTs). As GDT research advances, researchers are contemplating the potential next step of conducting field trials. An important point of discussion regarding these field trials relates to who should be informed, consulted, and involved in decision-making about their design and launch. It is generally argued that community members have a particularly strong claim to be engaged, and yet, disagreement and lack of clarity exist about how this "community" should be defined and delineated. In this paper, we shed light on this "boundary problem": the problem of determining how boundaries of inclusion and exclusion in (GDT) community engagement should be drawn. As our analysis demonstrates, the process of defining and delineating a community is itself normative. First, we explicate why it is important to define and delineate the community. Second, we demonstrate that different definitions of community are used and intermingled in the debate on GDTs, and argue in favor of distinguishing geographical, affected, cultural, and political communities. Finally, we propose initial guidance for deciding who should (not) be engaged in decision-making about GDT field trials, by arguing that the definition and delineation of the community should depend on the rationale for engagement and that the characteristics of the community itself can guide the effective design of community engagement strategies.
Asunto(s)
Tecnología de Genética Dirigida , Humanos , Participación de la Comunidad , Salud Pública , Investigadores , Disentimientos y DisputasRESUMEN
BACKGROUND: Massively parallel sequencing techniques, such as whole exome sequencing (WES) and whole genome sequencing (WGS), may reveal unsolicited findings (UFs) unrelated to the diagnostic aim. Such techniques are frequently used for diagnostic purposes in pediatric cases of developmental delay (DD). Yet policy guidelines for informed consent and return of UFs are not well equipped to address specific moral challenges that may arise in these children's situations. DISCUSSION: In previous empirical studies conducted by our research group, we found that it is sometimes uncertain how children with a DD will develop and whether they could come to possess capacities for autonomous decision-making in the future. Parents sometimes felt this brought them into a Catch-22 like situation when confronted with choices about UFs before undergoing WES in trio-analysis (both the parents' and child's DNA are sequenced). An important reason for choosing to consent to WES was to gain more insight into how their child might develop. However, to make responsible choices about receiving or declining knowledge of UFs, some idea of their child's future development of autonomous capacities is needed. This undesirable Catch-22 situation was created by the specific policy configuration in which parents were required to make choices about UFs before being sequencing (trio-analysis). We argue that this finding is relevant for reconfiguring current policies for return of UFs for WES/WGS and propose guidelines that encompass two features. First, the informed consent process ought to be staged. Second, differing guidelines are required for withholding/disclosing a UF in cases of DD appropriate to the level of confidence there is about the child's future developmental of autonomous capacities. CONCLUSION: When combined with a dynamic consent procedure, these two features of our guidelines could help overcome significant moral challenges that present themselves in the situations of children undergoing genomic sequencing for clarifying a DD.
Asunto(s)
Consentimiento Informado , Padres , Niño , Humanos , Secuenciación Completa del Genoma , Incertidumbre , GenómicaRESUMEN
INTRODUCTION: We conducted a systematic literature review and meta-analysis of empirical evidence on expected and experienced implications of sharing Alzheimer's disease (AD) biomarker results with individuals without dementia. METHODS: PubMed, Embase, APA PsycInfo, and Web of Science Core Collection were searched according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results from included studies were synthesized, and quantitative data on psychosocial impact were meta-analyzed using a random-effects model. RESULTS: We included 35 publications. Most personal stakeholders expressed interest in biomarker assessment. Learning negative biomarker results led to relief and sometimes frustration, while positive biomarkers induced anxiety but also clarity. Meta-analysis of five studies including 2012 participants (elevated amyloid = 1324 [66%], asymptomatic = 1855 [92%]) showed short-term psychological impact was not significant (random-effect estimate = 0.10, standard error = 0.23, P = 0.65). Most professional stakeholders valued biomarker testing, although attitudes and practices varied considerably. DISCUSSION: Interest in AD biomarker testing was high and sharing their results did not cause psychological harm. HIGHLIGHTS: Most personal stakeholders expressed interest in Alzheimer's disease biomarker assessment. Personal motivations included gaining insight, improving lifestyle, or preparing for the future. There was no short-term psychological impact of sharing biomarker status, implying it can be safe. Most professional stakeholders valued biomarker testing, believing the benefits outweigh the risk. Harmonized guidelines on biomarker testing and sharing results are required.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Amiloide , Biomarcadores , Proteínas Amiloidogénicas , Péptidos beta-AmiloidesRESUMEN
It may soon become possible not just to replace, but to re-grow healthy tissues after injury or disease, because of innovations in the field of Regenerative Medicine. One particularly promising innovation is a regenerative valve implant to treat people with heart valve disease. These implants are fabricated from so-called 'smart', 'lifelike' materials. Implanted inside a heart, these implants stimulate re-growth of a healthy, living heart valve. While the technological development advances, the ethical implications of this new technology are still unclear and a clear conceptual understanding of the notions 'smart' and 'lifelike' is currently lacking. In this paper, we explore the conceptual and ethical implications of the development of smart lifelike materials for the design of regenerative implants, by analysing heart valve implants as a showcase. In our conceptual analysis, we show that the materials are considered 'smart' because they can communicate with human tissues, and 'lifelike' because they are structurally similar to these tissues. This shows that regenerative valve implants become intimately integrated in the living tissues of the human body. As such, they manifest the ontological entanglement of body and technology. In our ethical analysis, we argue this is ethically significant in at least two ways: It exacerbates the irreversibility of the implantation procedure, and it might affect the embodied experience of the implant recipient. With our conceptual and ethical analysis, we aim to contribute to responsible development of smart lifelike materials and regenerative implants.
Asunto(s)
Cuerpo Humano , Materiales Inteligentes , Humanos , Prótesis e Implantes , Análisis Ético , Estado de SaludRESUMEN
Biomedical research often raises ethical questions that are usually addressed ad hoc or in retrospective. Real-time ethical engagement as part of research may be better suited to identify ethical issues.
Asunto(s)
Investigación Biomédica , Estudios RetrospectivosRESUMEN
The 'one-way' expert model of science communication is out of date. The new dialogue model requires from scientists more than just providing expert knowledge to the publics.
Asunto(s)
Comunicación , ConocimientoRESUMEN
The rise of precision medicine has led to an unprecedented focus on human biological material in biomedical research. In addition, rapid advances in stem cell technology, regenerative medicine and synthetic biology are leading to more complex human tissue structures and new applications with tremendous potential for medicine. While promising, these developments also raise several ethical and practical challenges which have been the subject of extensive academic debate. These debates have led to increasing calls for longitudinal governance arrangements between tissue providers and biobanks that go beyond the initial moment of obtaining consent, such as closer involvement of tissue providers in what happens to their tissue, and more active participatory approaches to the governance of biobanks. However, in spite of these calls, such measures are being adopted slowly in practice, and there remains a strong tendency to focus on the consent procedure as the tool for addressing the ethical challenges of contemporary biobanking. In this paper, we argue that one of the barriers to this transition is the dominant language pervading the field of human tissue research, in which the provision of tissue is phrased as a 'donation' or 'gift', and tissue providers are referred to as 'donors'. Because of the performative qualities of language, the effect of using 'donation' and 'donor' shapes a professional culture in which biobank participants are perceived as passive providers of tissue free from further considerations or entitlements. This hampers the kind of participatory approaches to governance that are deemed necessary to adequately address the ethical challenges currently faced in human tissue research. Rather than reinforcing this idea through language, we need to pave the way for the kind of participatory approaches to governance that are being extensively argued for by starting with the appropriate terminology.
Asunto(s)
Bancos de Muestras Biológicas , Investigación Biomédica , Humanos , Consentimiento Informado , Lenguaje , Medicina de PrecisiónRESUMEN
New developments in the field of biomedicine can have extensive implications for society. To steer research efforts in a responsible direction, biomedical scientists should contribute to a forward-looking ethical, and societal evaluation of new developments. However, the question remains how to equip students sufficiently with the skills they need to contribute to this evaluation. In this paper, we examine how the four dimensions of Responsible Research and Innovation (anticipation, reflexivity, inclusivity, and responsiveness) inform the identification of learning goals and teaching approaches that contribute to developing these skills in biomedical scientists. We suggest that these educational approaches focus on the skills to anticipate intended and unintended outcomes, reflect on the epistemological and moral aspects of research practice, and be inclusive of the variety of voices in society. We argue that if these dimensions are properly integrated into biomedical curricula, they will help students develop the attitudinal aspects necessary for becoming responsive, and prepare them for implementing the dimensions of responsible research into their daily practice. This paper focuses specifically on skills biomedical scientists need for the responsible conduct of research. Therefore, our analysis results, at least in part, in domain-specific recommendations. We invite educators from other disciplines to do the same exercise, as we believe this could lead to tailored educational approaches by which students from various disciplinary backgrounds learn how they each have a role in contributing to socially robust and morally responsible research practice.
RESUMEN
BACKGROUND: Gene drive technologies (GDTs) promote the rapid spread of a particular genetic element within a population of non-human organisms. Potential applications of GDTs include the control of insect vectors, invasive species and agricultural pests. Whether, and if so, under what conditions, GDTs should be deployed is hotly debated. Although broad stances in this debate have been described, the convictions that inform the moral views of the experts shaping these technologies and related policies have not been examined in depth in the academic literature. METHODS: In this qualitative study, we interviewed GDT experts (n = 33) from different disciplines to identify and better understand their moral views regarding these technologies. The pseudonymized transcripts were analyzed thematically. RESULTS: The respondents' moral views were principally influenced by their attitudes towards (1) the uncertainty related to GDTs; (2) the alternatives to which they should be compared; and (3) the role humans should have in nature. Respondents agreed there is epistemic uncertainty related to GDTs, identified similar knowledge gaps, and stressed the importance of realistic expectations in discussions on GDTs. They disagreed about whether uncertainty provides a rationale to refrain from field trials ('risks of intervention' stance) or to proceed with phased testing to obtain more knowledge given the harms of the status quo ('risks of non-intervention' stance). With regards to alternatives to tackle vector-borne diseases, invasive species and agricultural pests, respondents disagreed about which alternatives should be considered (un)feasible and (in)sufficiently explored: conventional strategies ('downstream solutions' stance) or systematic changes to health care, political and agricultural systems ('upstream solutions' stance). Finally, respondents held different views on nature and whether the use of GDTs is compatible with humans' role in nature ('interference' stance) or not ('non-interference stance'). CONCLUSIONS: This interview study helps to disentangle the debate on GDTs by providing a better understanding of the moral views of GDT experts. The obtained insights provide valuable stepping-stones for a constructive debate about underlying value conflicts and call attention to topics that deserve further (normative) reflection. Further evaluation of these issues can facilitate the debate on and responsible development of GDTs.
Asunto(s)
Tecnología de Genética Dirigida , Actitud , Principios Morales , Investigación CualitativaRESUMEN
Advances in genome sequencing together with the introduction of personalized medicine offer promising new avenues for research and precision treatment, particularly in the field of oncology. At the same time, the convergence of genomics, bioinformatics, and the collection of human tissues and patient data creates novel moral duties for researchers. After all, unprecedented amounts of potentially sensitive information are being generated. Over time, traditional research ethics principles aimed at protecting individual participants have become supplemented with social obligations related to the interests of society and the research enterprise at large, illustrating that genomic medicine is also a social endeavor. In this review we provide a comprehensive assembly of moral duties that have been attributed to genomics researchers and offer suggestions for responsible advancement of personalized genomic cancer care.