Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(19): 13210-13225, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709955

RESUMEN

A new class of photoswitchable NHC ligands, named azImBA, has been developed by integrating azobenzene into a previously unreported imidazobenzoxazol-1-ylidene framework. These rigid photochromic carbenes enable precise control over confinement around a metal's coordination sphere. As a model system, gold(I) complexes of these NHCs exhibit efficient bidirectional E-Z isomerization under visible light, offering a versatile platform for reversibly photomodulating the reactivity of organogold species. Comprehensive kinetic studies of the protodeauration reaction reveal rate differences of up to 2 orders of magnitude between the E and Z isomers of the NHCs, resulting in a quasi-complete visible-light-gated ON/OFF switchable system. Such a high level of photomodulation efficiency is unprecedented for gold complexes, challenging the current state-of-the-art in photoswitchable organometallics. Thorough investigations into the ligand properties paired with structure-reactivity correlations underscored the unique ligand's steric features as a key factor for reactivity. This effective photocontrol strategy was further validated in gold(I) catalysis, enabling in situ photoswitching of catalytic activity in the intramolecular hydroalkoxylation and -amination of alkynes. Given the significance of these findings and its potential as a widely applicable, easily customizable photoswitchable ancillary ligand platform, azImBA is poised to stimulate the development of adaptive, multifunctional metal complexes.

2.
Acc Chem Res ; 56(24): 3676-3693, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38064346

RESUMEN

ConspectusFinding efficient synthetic methods for the asymmetric synthesis of complex molecules has always been of interest to organic chemists. Creating and controlling the stereochemistry of stereogenic centers bearing branched allylic moieties in organic molecules using a catalytic process is an attractive and successful method for the synthesis of several natural products and medicinally important compounds. Remarkable progress toward their synthesis has been achieved via transition-metal catalysis, especially in the case of allylic substitution and allylic C-H oxidation chemistry. However, for allylic substitution the preinstallation of a leaving group is essential, and for allylic C-H oxidation, stoichiometric amounts of oxidant are required. Besides that, the control of regioselectivity with these methods is often problematic because the linear product can be produced as a major isomer. Our research group has developed a regioselective, enantioselective, and atom economic route toward the more valuable branched product via a Rh-catalyzed coupling of easily accessible alkynes or the double-bond isomeric allenes with pronucleophiles. It was demonstrated that, using this new approach, it is possible to add different pronucleophiles to alkynes or allenes to form branched allylic moieties through C-C and C-heteroatom bond formation. Since new organic reactions offer new opportunities in chemical synthesis and the benchmark for new synthetic methods is their application in target-oriented synthesis, we have demonstrated several successful syntheses of natural products and medicinally relevant targets. For example, in the total syntheses of Quercuslactones, Helicascolides A-C, Epothilone D, Homolargazole, and Thailandepsin B, the Rh-catalyzed hydro-oxycarbonylation of allenes was used as key step via C-O bond formation. Remarkably, the Rh-catalyzed C2-symmetric dimerization strategy was used to synthesize the complex molecules Clavosolide A and Vermiculine, leading to an extreme increase in structural complexity within a single step. For the total syntheses of Centrolobine, Pitavastatin, and Rosuvastatin, C-O bond formation was achieved through the addition of a hydroxy function to the allene moiety. The potential of the addition of nitrogen pronucleophiles to allenes was demonstrated in the total syntheses of Cusparein, Angusterein, Cermicin C, Senepodin G, Homoproline, Pipecolinol, Coniceine, Coniine, Ruxolitinib, Sitagliptin, Abacavir, Glucokinase activators, and Chaetominine. All of these examples testify to the wide applicability of the Rh-catalyzed addition of pronucleophiles to allenes or alkynes in target-oriented synthesis, and in this Account we summarize our contribution.

3.
Chemistry ; 30(26): e202400188, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38411034

RESUMEN

Herein, we present an efficient and atom-economic tandem hydroformylation organocatalyzed Friedel-Crafts reaction sequence for the synthesis of diindolylmethanes. Classic syntheses have relied on (Lewis) acid activation of aldehydes, which are often not commercially available and rather sensitive in handling. In contrast, the combination of rhodium-catalyzed hydroformylation and subsequent organocatalytic activation of the in-situ formed aldehydes allows the use of readily available and stable alkenes with various functional groups while avoiding acidic conditions to expand the range of available diindolylmethanes. A broad scope of diindolylmethanes was prepared in yields up to 85 % demonstrates the utility of the presented method.

4.
Chemistry ; 30(9): e202303752, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38109037

RESUMEN

Herein, a highly efficient five-step reaction sequence to BODIPYs is presented. The key step is the combination of transition metal-catalyzed in-situ generation of aldehydes and their subsequent organocatalytic activation to yield dipyrromethanes, which are further converted to the corresponding BODIPY. Classic syntheses towards BODIPYs have relied on aldehydes or acid chlorides, which are often not commercially available and rather sensitive to handle. The presented approach starts from readily available and stable alkenes or aryl-bromides, which allows to extend the range of readily available BODIPYs that can be tailored for their specific use. The synthesis of 55 derivatives with overall yields of up to 78 % demonstrates the wide applicability and advantages of the presented method.

5.
Chemistry ; : e202402010, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855991

RESUMEN

We report herein of a novel, enantioselective and rhodium- catalyzed cyclisation of allenyl alcohols towards chiral α-vinylic, cyclic ethers employing a rhodium/(R,R)-Me-ferrocelane catalyst. The corresponding chiral cyclic products were obtained in general high yield and enantioselectivities. The synthetic value of our obtained products was further exemplified by transformations of the allylic ether function. Furthermore, applying our newly developed method in our previously reported route towards the total synthesis of (R,R,R)-α-tocopherol, we were able to devise a significantly improved 2nd generation total synthesis with 12 steps in the longest linear sequence and an overall total yield of 24%.

6.
Angew Chem Int Ed Engl ; 63(14): e202317981, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38323896

RESUMEN

Enantiomerically enriched crown ethers (CE) exhibit strong asymmetric induction in phase transfer catalysis, supramolecular catalysis and molecular recognition processes. Traditional methods have often been used to access these valuable compounds, which limit their diversity and consequently their applicability. Herein, a practical catalytic method is described for the gram scale synthesis of a class of chiral CEs (aza-crown ethers; ACEs) using Rh-catalyzed hydroamination of bis(allenes) with diamines. Using this approach, a wide range of chiral vinyl functionalized CEs with ring sizes ranging from 12 to 36 have been successfully prepared in high yields of up to 92 %, dr of up to >20 : 1 and er of up to >99 : 1. These vinyl substituted CEs allow for further diversification giving facile access to various CE derivatives as well as to their three-dimensional analogues using ring-closing metathesis. Some of these chiral CEs themselves display high potential for use in asymmetric catalysis.

7.
Chemistry ; 29(33): e202300719, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-36928880

RESUMEN

The Pd-catalyzed Suzuki-Miyaura cross-couplings (SMRs) are utilized as the most practical method to construct C-C bond, especial for biaryls. However, a major disadvantage of current protocols is the requirement of excess organoboron coupling partner (1.5-3.0 equiv.). Herein, a novel palladacyclic 1,3-bis(2,6-diisopropylphenyl)acenaphthoimidazol-2-ylidene (AnIPr) precatalyst possessing a chiral oxazoline was designed, which enabled a general protocol towards bulky tri-ortho-substituted biaryls, ternaphthalenes and diarylanthracenes via the Pd-catalyzed SMR employing equimolar organoborons and aryl bromides. A remarkable scope of substrates with various functional groups and heterocycles were well compatible with an adaptability to synthesize useful ligands.


Asunto(s)
Bromuros , Paladio , Paladio/química , Catálisis , Ligandos , Bromuros/química
8.
Angew Chem Int Ed Engl ; 61(20): e202200105, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35170841

RESUMEN

Intermolecular photocatalytic hydroaminoalkylation (HAA) of alkenes have emerged as a powerful method for the construction of alkyl amines. Although there are some studies aiming at stereoselective photocatalytic HAA reactions, the alkenes are limited to electrophilic alkenes. Herein, we report a highly regio-, diastereo-, and enantioselective HAA of electron-rich dienol ethers and α-amino radicals derived from α-amino acids using a unified photoredox and palladium catalytic system. This decarboxylative 1,2-Markovnikov addition enables the construction of vicinal amino tertiary ethers with high levels of regio- (up to >19 : 1 rr), diastereo- (up to >19 : 1 dr), and enantioselectivity control (up to >99 % ee). Mechanistic studies support a reversible hydropalladation as a key step.


Asunto(s)
Éteres , Paladio , Alquenos/química , Catálisis , Éteres/química , Paladio/química , Estereoisomerismo
9.
Metabolomics ; 17(6): 52, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34028607

RESUMEN

INTRODUCTION: One approach to dampen the inflammatory reactions resulting from implantation surgery of cochlear implant hearing aids is to embed dexamethasone into the matrix of the electrode carrier. Possible side effects for sensory cells in the inner ear on the metabolomics have not yet been evaluated. OBJECTIVE: We examined changes in the metabolome of the HEI-OC1 cell line after dexamethasone incubation as a cell model of sensory cells of the inner ear. RESULTS AND CONCLUSION: Untargeted GC-MS-profiling of metabolic alterations after dexamethasone treatment showed that dexamethasone had antithetical effects on the metabolic signature of the cells depending on growth conditions. The differentiated state of HEI-OC1 cells is better suited for elucidating metabolic changes induced by external factors. Dexamethasone treatment of differentiated cells led to an increase in intracellular amino acids and enhanced glucose uptake and ß-oxidation in the cells. Increased availability of precursors for glycolysis and ATP production by ß-oxidation stabilizes the energy supply in the cells, which could be assumed to be beneficial in coping with cellular stress. We found no negative effects of dexamethasone on the metabolic level, and changes may even prepare sensory cells to better overcome cellular stress following implantation surgery.


Asunto(s)
Oído Interno , Línea Celular , Dexametasona/farmacología
10.
Chemistry ; 27(8): 2643-2648, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33294985

RESUMEN

The design and synthesis of air-stable and conveniently crystallizable RhIII -cyclopentadienyl catalysts substituted with a urea moiety, which are able to accelerate the C-H olefination of benzoic acid derivatives, is reported. Through kinetic studies and NMR titration experiments, the catalysts' substrate recognition ability mediated by hydrogen bonding was identified to be the reason for this effect. Introduction of pyridone-phosphine ligands capable of forming additional H-bond interactions increased the catalytic performance even further. By unveiling a proportionality between reaction rate and relative complex formation enthalpy the hypothesis of a supramolecular catalyst preformation was supported. Its application to a variety of substrates proved the catalyst system's advantages, generally increasing the yields when compared to the results obtained with widely used [RhCp*Cl2 ]2 .

11.
Chemistry ; 27(56): 14034-14041, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34260787

RESUMEN

Detailed mechanistic investigations on our previously reported synthesis of branched allylic esters by the rhodium complex-catalyzed propargylic C-H activation have been carried out. Based on initial mechanistic studies, we present herein more detailed investigations of the reaction mechanism. For this, various analytical (NMR, X-ray crystal structure analysis, Raman) and kinetic methods were used to characterize the formation of intermediates under the reaction conditions. The knowledge obtained by this was used to further optimize the previous conditions and generate a more active catalytic system.

12.
Inorg Chem ; 60(13): 9484-9495, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34133148

RESUMEN

An unprecedented visible-light-driven photocatalytic system consisting of Pd nanoparticles stabilized on g-C3N4-imine-functionalized TiO2 nanoparticles was discovered for photoassisted hydrogen generation followed by olefin hydrogenation under mild conditions. The structural integrity of the as-synthesized photocatalyst was corroborated by Fourier transform infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, ultraviolet-diffuse reflectance spectroscopy, Brunauer-Emmett-Teller measurements, and thermogravimetric analysis (TGA). Transmission electron microscopy and high-resolution scanning electron microscopy revealed the nanoscopic nature of the catalyst. The photocatalyst promoted several different transformations in a one-pot reaction sequence: hydrogen evolution through photocatalytic acceptorless formation of benzimidazoles as important therapeutic agents followed by visible-light-driven photocatalytic reduction of olefins with a high hydrogen utilization efficiency of up to 92% under mild conditions. A significant volume of H2 was produced under blue light-emitting diode (LED) irradiation during the selective formation of benzimidazole, while the selectivity reduced significantly under a Xe lamp or in the dark. The in situ-generated H2 could be activated by the as-prepared Pd-C3N4-imine/TiO2 photocatalyst to effectively hydrogenate olefins under mild conditions at appropriate time exposed to blue LED irradiation. The light-dependent photocatalytic performance of the title catalyst was assessed using action spectra by calculating the apparent quantum efficiency (AQE), which exhibited the maximum AQEs at 410 and 550 nm, at which the highest performance for styrene hydrogenation was obtained. The improved photoredox activity of the title nanohybrid could be caused by the synergistic effects of the heterojunction of carbon nitride-Pd on TiO2 nanoparticles evidenced by photoluminescence spectra and catalytic reactions. The catalyst proved to be air-stable, robust, recyclable, and very active in the absence of any undesirable additives and reducing agents. Thus, this work presents a new protocol for improving the photocatalytic properties of semiconducting materials for various photocatalytic applications under environmentally friendly conditions.

13.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072837

RESUMEN

The chromatin reader protein Spindlin1 plays an important role in epigenetic regulation, through which it has been linked to several types of malignant tumors. In the current work, we report on the development of novel analogs of the previously published lead inhibitor A366. In an effort to improve the activity and explore the structure-activity relationship (SAR), a series of 21 derivatives was synthesized, tested in vitro, and investigated by means of molecular modeling tools. Docking studies and molecular dynamics (MD) simulations were performed to analyze and rationalize the structural differences responsible for the Spindlin1 activity. The analysis of MD simulations shed light on the important interactions. Our study highlighted the main structural features that are required for Spindlin1 inhibitory activity, which include a positively charged pyrrolidine moiety embedded into the aromatic cage connected via a propyloxy linker to the 2-aminoindole core. Of the latter, the amidine group anchor the compounds into the pocket through salt bridge interactions with Asp184. Different protocols were tested to identify a fast in silico method that could help to discriminate between active and inactive compounds within the A366 series. Rescoring the docking poses with MM-GBSA calculations was successful in this regard. Because A366 is known to be a G9a inhibitor, the most active developed Spindlin1 inhibitors were also tested over G9a and GLP to verify the selectivity profile of the A366 analogs. This resulted in the discovery of diverse selective compounds, among which 1s and 1t showed Spindlin1 activity in the nanomolar range and selectivity over G9a and GLP. Finally, future design hypotheses were suggested based on our findings.


Asunto(s)
Fenómenos Biofísicos , Proteínas de Ciclo Celular/química , Epigénesis Genética , Proteínas Asociadas a Microtúbulos/química , Fosfoproteínas/química , Conformación Proteica , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/ultraestructura , Entropía , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/ultraestructura , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosfoproteínas/ultraestructura , Unión Proteica , Relación Estructura-Actividad
14.
Chemistry ; 26(11): 2342-2348, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31778591

RESUMEN

The ligand-controlled rhodium-catalyzed regioselective coupling of 1,2,3-benzotriazoles and allenes was investigated by DFT calculations. Because allylation can occur at either the N1 or N2 position of the 1,2,3-benzotriazole, the complete Gibbs free energy profiles for both pathways were computed. A kinetic preference emerged for the experimentally observed N1 allylation with the JoSPOphos ligand, whereas N2 allylation was favored with DPEphos. Analysis of the regiodetermining oxidative addition step by using the activation strain model in conjunction with a matching energy decomposition analysis has revealed that the unprecedented N2 reaction regioselectivity is dictated by the strength of the electrostatic interactions between the 1,2,3-benzotriazole and the rhodium catalyst. The nature of the electrostatic interaction was rationalized by analysis of the electrostatic potential maps and Hirshfeld charges: a stabilizing electrostatic interaction was found between the key atoms involved in the oxidative addition for the N2 pathway, analogous interactions are weaker in the N1 case.

15.
Chemistry ; 26(69): 16241-16245, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32725698

RESUMEN

New Thailandepsin B pseudo-natural products have been prepared. Our synthetic strategy offers the possibility to introduce varying warheads via late stage modification. Additionally, it gives access to the asymmetric branched allylic ester moiety of the natural product in a highly diastereoselective manner applying rhodium-catalyzed hydrooxycarbonylation. The newly developed pseudo-natural products are extremely potent and selective HDAC inhibitors. The non-proteinogenic amino acid d-norleucine was obtained enantioselectively by a recently developed method of rhodium-catalyzed hydroamination.

16.
Angew Chem Int Ed Engl ; 59(52): 23485-23490, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-32940396

RESUMEN

A comprehensive study of a diastereoselective Rh-catalyzed cyclization of terminal and internal allenols is reported. The methodology allows the atom economic and highly syn-selective access to synthetically important 2,4-disubstituted and 2,4,6-trisubstituted tetrahydropyrans (THP). Furthermore, its utility and versatility are demonstrated by a great functional-group compatibility and the enantioselective total synthesis of (-)-centrolobine.

17.
Chemistry ; 25(69): 15746-15750, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31549749

RESUMEN

A new methodology to form C(sp3 )-C(sp2 ) bonds by visible-light-driven intermolecular reductive ene-yne coupling has been successfully developed. The process relies on the ability of the Hantzsch ester to contribute in both SET and HAT processes through a unified cobalt and iridium catalytic system. This procedure avoids the use of stoichiometric amounts of reducing metallic reagents, which is translated into high functional-group tolerance and atom economy.

18.
Chemistry ; 25(14): 3532-3535, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30672028

RESUMEN

A short and efficient synthesis of the C2 -symmetric antibiotic (-)-vermiculine by utilizing an enantioselective catalytic one-step dimerization methodology as key-step to construct the core structure is reported. The late-stage modifications feature a double metathesis homologation followed by a double Wacker-type oxidation. These key-steps allowed the synthesis of vermiculine in only seven steps, starting from commercially available building blocks.

19.
Mol Cell ; 42(5): 584-96, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21658600

RESUMEN

Activation of p53 by DNA damage results in either cell-cycle arrest, allowing DNA repair and cell survival, or induction of apoptosis. As these opposite outcomes are both mediated by p53 stabilization, additional mechanisms to determine this decision must exist. Here, we show that glycogen synthase kinase-3 (GSK-3) is required for the p53-mediated induction of the proapoptotic BH3 only-protein PUMA, an essential mediator of p53-induced apoptosis. Inhibition of GSK-3 protected from cell death induced by DNA damage and promoted increased long-term cell survival. We demonstrate that GSK-3 phosphorylates serine 86 of the p53-acetyltransferase Tip60. A Tip60(S86A) mutant was less active to induce p53 K120 acetylation, histone 4 acetylation, and expression of PUMA. Our data suggest that GSK-3 mediated Tip60S86 phosphorylation provides a link between PI3K signaling and the choice for or against apoptosis induction by p53.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Glucógeno Sintasa Quinasa 3/fisiología , Histona Acetiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Acetilación , Línea Celular Tumoral , Daño del ADN , Glucógeno Sintasa Quinasa 3/metabolismo , Histona Acetiltransferasas/química , Histona Acetiltransferasas/fisiología , Humanos , Lisina Acetiltransferasa 5 , Fosforilación , Regiones Promotoras Genéticas
20.
Angew Chem Int Ed Engl ; 58(11): 3392-3397, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30620131

RESUMEN

A rhodium/photoredox dual catalyzed regiodivergent α-allylation of amines is described. As an atom-economic and efficient method, alkynes and allenes are used as allylic electrophile surrogates in this novel protocol. With different reaction conditions, synthetically useful branched or linear homoallylic amines could be synthesized in good to excellent yields and regioselectivity. This straightforward strategy complements the traditional transition-metal catalyzed allylation reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA