RESUMEN
For many tasks in failure and damage analysis of surfaces deteriorated in heavy tribological contact, the detailed characterization of used lubricants and their additives is essential. The objective of the presented work is to establish accessibility of tribostressed surfaces for direct characterization via modified atmospheric pressure-matrix assisted laser desorption/ionization-mass spectrometry (m-AP-MALDI-MS). Special target holders were constructed to allow target samples of differing shape and form to fit into the desorption/ionization chamber. The best results of desorption and ionization on different target materials and varying roughnesses were achieved on smooth surfaces with low matrix/substrate interaction. M-AP-MALDI characterization of tribologically stressed steel surfaces after pin-on-disc sliding wear tests (SRV-tribotests) yielded positive identification of used friction modifier additives. Further structure elucidation by electrospray ionization mass spectrometry (ESI-MS) and measurements of worn surfaces by time-of-flight-secondary ion mass spectrometry (TOF-SIMS) accompanied findings about additive behavior and deterioration during tribological contact. Using m-AP-MALDI for direct offline examinations of worn surfaces may set up a quick method for determination of additives used for lubrication and general characterization of a tribological system.
RESUMEN
BACKGROUND: Blood oxygen saturation (SpO 2 ) is frequently measured to determine acclimatization status in high-altitude travellers. However, little is known about nocturnal time course of SpO 2 (SpO 2N ), but alterations in SpO 2N might be practically relevant as well. To this end, we describe the time-course of SpO 2N in mountaineers at high altitude. METHODS: SpO 2N was continuously measured in ten male mountaineers during a three-week expedition in Peru (3,050-6,354m). Average SpO 2N of the first (SpO 2N1 ) and second half (SpO 2N2 ) of an individual's sleep duration was calculated from 2h intervals of uninterrupted sleep. Heart rate oscillations and sleep dairies were used to exclude periods of wakefulness. SpO 2 was also measured at rest in the morning. RESULTS: SpO 2N significantly increased from SpO 2N1 to SpO 2N2 . The magnitude of this increase (ΔSpO 2 ) was reduced with time spent at altitude. On night 1 (3,050m) SpO 2 increased from 83.4% (N1) to 86.3% (N2). At the same location on night 21, SpO 2 increased from 88.3% to 90.1%, which is a relative change of 4.7% and 2.0%, respectively. This pattern of increase in SpO 2N was perturbed when individual acclimatization was poor or altitude was extreme (5630m). SpO 2N was significantly lower than SpO 2 at rest in the morning. CONCLUSIONS: This study is the first to demonstrate an increase of SpO 2 during the night in mountaineers at high altitude (3,050-6,354m) with high consistency between and within subjects. The magnitude of ΔSpO 2N decreased as acclimatization improved, suggesting that these changes in ΔSpO 2 between nights might be a valuable indicator of individual acclimatization. In addition, the failure of any increase in SpO 2N during the night might indicate insufficient acclimatization. Even though underlying mechanisms for the nocturnal increase remain unclear, the timing of SpO 2N measurement is obviously of utmost importance for its interpretation. Finally our study illustrates the detailed effects of ventilatory acclimatization over several weeks.
Asunto(s)
Mal de Altura/sangre , Montañismo , Oxígeno/sangre , Viaje , Aclimatación , Adulto , Ritmo Circadiano , Humanos , Masculino , Persona de Mediana Edad , PerúRESUMEN
Chemical imaging is a powerful tool for understanding the chemical composition and nature of heterogeneous samples. Recent developments in elemental, vibrational, and mass-spectrometric chemical imaging with high spatial resolution (50-200 nm) and reasonable timescale (a few hours) are capable of providing complementary chemical information about various samples. However, a single technique is insufficient to provide a comprehensive understanding of chemically complex materials. For bulk samples, the combination of different analytical methods and the application of statistical methods for extracting correlated information across different techniques is a well-established and powerful concept. However, combined multivariate analytics of chemical images obtained via different imaging techniques is still in its infancy, hampered by a lack of analytical methodologies for data fusion and analysis. This study demonstrates the application of multivariate statistics to chemical images taken from the same sample via various methods to assist in chemical structure determination.