Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(45): e2209382119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36603188

RESUMEN

Studies using rodent models have shown that relapse to drug or food seeking increases progressively during abstinence, a behavioral phenomenon termed "incubation of craving." Mechanistic studies of incubation of craving have focused on specific neurobiological targets within preselected brain areas. Recent methodological advances in whole-brain immunohistochemistry, clearing, and imaging now allow unbiased brain-wide cellular resolution mapping of regions and circuits engaged during learned behaviors. However, these whole-brain imaging approaches were developed for mouse brains, while incubation of drug craving has primarily been studied in rats, and incubation of food craving has not been demonstrated in mice. Here, we established a mouse model of incubation of palatable food craving and examined food reward seeking after 1, 15, and 60 abstinence days. We then used the neuronal activity marker Fos with intact-brain mapping procedures to identify corresponding patterns of brain-wide activation. Relapse to food seeking was significantly higher after 60 abstinence days than after 1 or 15 days. Using unbiased ClearMap analysis, we identified increased activation of multiple brain regions, particularly corticostriatal structures, following 60 but not 1 or 15 abstinence days. We used orthogonal SMART2 analysis to confirm these findings within corticostriatal and thalamocortical subvolumes and applied expert-guided registration to investigate subdivision and layer-specific activation patterns. Overall, we 1) identified brain-wide activity patterns during incubation of food seeking using complementary analytical approaches and 2) provide a single-cell resolution whole-brain atlas that can be used to identify functional networks and global architecture underlying the incubation of food craving.


Asunto(s)
Ansia , Metanfetamina , Animales , Ratones , Encéfalo , Ansia/fisiología , Señales (Psicología) , Comportamiento de Búsqueda de Drogas/fisiología , Alimentos , Recurrencia , Autoadministración
2.
Epilepsy Behav ; 98(Pt A): 249-257, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31398689

RESUMEN

Comorbidities associated with epilepsy greatly reduce patients' quality of life. Since antiepilepsy drugs show limited success in ameliorating cognitive and behavioral symptoms, there is a need to better understand the mechanisms underlying epilepsy-related cognitive and behavioral impairments. Most prior research addressing this problem has focused on chronic epilepsy, wherein many factors can simultaneously impact cognition and behavior. The purpose of the present study was to develop a testing paradigm using mice that can provide new insight into how short-term biological changes underlying acute seizures impact cognition and behavior. In Experiment 1, naïve C57BL/6J mice were subjected to either three brief, generalized electroconvulsive seizure (ECS) or three sham treatments equally spaced over the course of 30 min. Over the next 2 h, mice were tested in a novel object recognition paradigm. Follow-up studies examined locomotor activity immediately before and after (Experiment 2), immediately after (Experiment 3), and 45 min after (Experiment 4) a set of three ECS or sham treatments. Whereas results demonstrated that there was no statistically significant difference in recognition memory acquisition between ECS and sham-treated mice, measures of anxiety-like behavior were increased and novel object interest was decreased in ECS-treated mice compared with that in sham. Interestingly, ECS also produced a delayed inhibitory effect on locomotion, decreasing open-field activity 45-min posttreatment compared to sham. We conclude that a small cluster of brief seizures can have acute, behaviorally relevant effects in mice, and that greater emphasis should be placed on events that take place before chronic epilepsy is established in order to better understand epilepsy-related cognitive and behavioral impairments. Future research would benefit from using the paradigms defined above to study the effects of individual seizures on mouse cognition and behavior.


Asunto(s)
Cognición/fisiología , Conducta Exploratoria/fisiología , Actividad Motora/fisiología , Reconocimiento en Psicología/fisiología , Convulsiones/psicología , Animales , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/psicología , Electrochoque/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Calidad de Vida/psicología , Convulsiones/etiología
3.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-38196637

RESUMEN

Single nucleus RNA-sequencing is critical in deciphering tissue heterogeneity and identifying rare populations. However, current high throughput techniques are not optimized for rare target populations and require tradeoffs in design due to feasibility. We provide a novel snRNA pipeline, MulipleXed Population Selection and Enrichment snRNA-sequencing (XPoSE-seq), to enable targeted snRNA-seq experiments and in-depth transcriptomic characterization of rare target populations while retaining individual sample identity.

4.
Neuropsychopharmacology ; 46(11): 1969-1980, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34162997

RESUMEN

Persistent susceptibility to cue-induced relapse is a cardinal feature of addiction. Discriminative stimuli (DSs) are one type of drug-associated cue that signal drug availability (DS+) or unavailability (DS-) and control drug seeking prior to relapse. We previously established a trial-based procedure in rats to isolate DSs from context, conditioned stimuli, and other drug-associated cues during cocaine self-administration and demonstrated DS-controlled cocaine seeking up to 300 abstinence days. The behavioral and neural mechanisms underlying trial-based DS-control of drug seeking have rarely been investigated. Here we show that following discrimination training in our trial-based procedure, the DS+ and DS- independently control the expression and suppression of cocaine seeking during abstinence. Using microinjections of GABAA + GABAB receptor agonists (muscimol + baclofen) in medial prefrontal cortex, we report that infralimbic, but not prelimbic, subregion of medial prefrontal cortex is critical to persistent DS-controlled relapse to cocaine seeking after prolonged abstinence, but not DS-guided discriminated cocaine seeking or DS-controlled cocaine self-admininstration. Finally, using ex vivo whole-cell recordings from pyramidal neurons in the medial prefrontal cortex, we demonstrate that the disruption of DS-controlled cocaine seeking following infralimbic cortex microinjections of muscimol+baclofen is likely a result of suppression of synaptic transmission in the region via a presynaptic mechanism of action.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Señales (Psicología) , Comportamiento de Búsqueda de Drogas , Extinción Psicológica , Corteza Prefrontal , Ratas , Recurrencia , Autoadministración
5.
ACS Pharmacol Transl Sci ; 3(5): 907-920, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33073190

RESUMEN

IBNtxA (3-iodobenzoyl naltrexamine) is a novel µ-opioid receptor (MOR) agonist which is structurally related to the MOR antagonist naltrexone. Recent studies suggest IBNtxA preferentially signals through truncated MOR splice variants, resulting in anti-nociception with reduced side effects, including no conditioned place preference (CPP) when tested at a single dose. IBNtxA represents an intriguing lead compound for preclinical drug development targeting truncated MOR splice variants, but further evaluation of its in vivo pharmacological profile is necessary. The purpose of this study was to independently verify the antinociceptive properties of IBNtxA and to examine more completely the rewarding properties and discriminative stimulus effects of IBNtxA, allowing broader assessment of IBNtxA as a candidate for further medications development. A dose of 3 mg/kg IBNtxA was equipotent to 10 mg/kg morphine in a hot-plate analgesia assay. In drug discrimination testing using mice trained to discriminate between 3 mg/kg IBNtxA and vehicle, the κ-agonist U-50488 fully substituted for IBNtxA. MOR agonist morphine, δ-agonist SNC162, NOP agonist SCH 221510, and MOR/NOP partial agonist buprenorphine each partially substituted for IBNtxA. IBNtxA up to 3 mg/kg did not produce a place preference in CPP. Pretreatment with 3 mg/kg IBNtxA but not 1 mg/kg IBNtxA attenuated acquisition of place preference for 10 mg/kg morphine. A dose of 3 mg/kg IBNtxA attenuated morphine-induced hyperlocomotion but did not alter naloxone-precipitated morphine withdrawal. Overall, IBNtxA has a complicated opioid receptor pharmacology in vivo. These results indicate that IBNtxA produces potent anti-nociception and has low abuse liability, likely driven by substantial κ agonist signaling effects.

6.
Bio Protoc ; 9(23): e3445, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654940

RESUMEN

In abstinent drug addicts, cues formerly associated with drug-taking experiences gain relapse-inducing potency ('incubate') over time. Animal models of incubation may help in developing treatments for relapse prevention. However, these models have primarily focused on the role of conditioned stimuli (CSs) signaling drug delivery and not on discriminative stimuli (DSs), which signal drug availability and are also known to play a major role in drug relapse. We recently showed that DS-controlled cocaine seeking in rats also incubates during abstinence and persists up to 300 days. We used a trial-based procedure to train male and female rats to discriminate between two light cues: one light cue (DS+) signaled the availability of cocaine reward and the second light cue (DS-) signaled the absence of reward. Rats learned to press a central retractable lever during trials in which the DS+ cue was presented and to suppress responding when the DS- cue was presented. Here, we provide a detailed protocol for the behavioral procedure used in our study. The trial-based design of this behavior lends itself well to time-locked in vivo recording and manipulation approaches that can be used to identify neurobiological mechanisms underlying the contributions of DSs to drug relapse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA