Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 64(3): 344-356, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33264064

RESUMEN

The interplay of type-2 inflammation and antiviral immunity underpins asthma exacerbation pathogenesis. Virus infection induces type-2 inflammation-promoting chemokines CCL17 and CCL22 in asthma; however, mechanisms regulating induction are poorly understood. By using a human rhinovirus (RV) challenge model in human airway epithelial cells in vitro and mice in vivo, we assessed mechanisms regulating CCL17 and CCL22 expression. Subjects with mild to moderate asthma and healthy volunteers were experimentally infected with RV and airway CCL17 and CCL22 protein quantified. In vitro airway epithelial cell- and mouse-RV infection models were then used to define STAT6- and NF-κB-mediated regulation of CCL17 and CCL22 expression. Following RV infection, CCL17 and CCL22 expression was higher in asthma, which differentially correlated with clinical and immunological parameters. Air-liquid interface-differentiated primary epithelial cells from donors with asthma also expressed higher levels of RV-induced CCL22. RV infection boosted type-2 cytokine-induced STAT6 activation. In epithelial cells, type-2 cytokines and STAT6 activation had differential effects on chemokine expression, increasing CCL17 and suppressing CCL22, whereas NF-κB promoted expression of both chemokines. In mice, RV infection activated pulmonary STAT6, which was required for CCL17 but not CCL22 expression. STAT6-knockout mice infected with RV expressed increased levels of NF-κB-regulated chemokines, which was associated with rapid viral clearance. Therefore, RV-induced upregulation of CCL17 and CCL22 was mediated by NF-κB activation, whereas expression was differentially regulated by STAT6. Together, these findings suggest that therapeutic targeting of type-2 STAT6 activation alone will not block all inflammatory pathways during RV infection in asthma.


Asunto(s)
Asma/patología , Asma/virología , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Progresión de la Enfermedad , Rhinovirus/fisiología , Factor de Transcripción STAT6/metabolismo , Células A549 , Adolescente , Adulto , Animales , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , Cinética , Pulmón/patología , Pulmón/virología , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , FN-kappa B/metabolismo , Donantes de Tejidos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA