Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nucl Cardiol ; 29(3): 1419-1429, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33502690

RESUMEN

BACKGROUND: Myocardial insulin resistance (IR) could be a predictive factor of cardiovascular events. This study aimed to introduce a new method using 123I-6-deoxy-6-iodo-D-glucose (6DIG), a pure tracer of glucose transport, for the assessment of IR using cardiac dynamic nuclear imaging. METHODS: The protocol evaluated first in rat-models consisted in two 6DIG injections and one of insulin associated with planar imaging and blood sampling. Compartmental modeling was used to analyze 6DIG kinetics in basal and insulin conditions and to obtain an index of IR. As a part of a translational approach, a clinical study was then performed in 5 healthy and 6 diabetic volunteers. RESULTS: In rodent models, the method revealed reproducible when performed twice at 7 days apart in the same animal. Rosiglitazone, an insulin-sensitizing drug, induced a significant increase of myocardial IR index in obese Zucker rats from 0.96 ± 0.18 to 2.26 ± 0.44 (P<.05) after 7 days of an oral treatment, and 6DIG IR indexes correlated with the gold standard IR index obtained through the hyperinsulinemic-euglycemic clamp (r=.68, P<.02). In human, a factorial analysis was applied on images to obtain vascular and myocardial kinetics before compartmental modeling. 1.5-fold to 2.2-fold decreases in mean cardiac IR indexes from healthy to diabetic volunteers were observed without reaching statistical significance. CONCLUSIONS: These preclinical results demonstrate the reproducibility and sensibility of this novel imaging methodology. Although this first in-human study showed that this new method could be rapidly performed, larger studies need to be planned in order to confirm its performance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Resistencia a la Insulina , Animales , Glucemia , Técnica de Clampeo de la Glucosa , Humanos , Insulina , Ratas , Ratas Zucker , Reproducibilidad de los Resultados
2.
Int J Cancer ; 146(11): 3147-3159, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32037530

RESUMEN

Colibactin-producing E. coli (CoPEC) are frequently detected in colorectal cancer (CRC) and exhibit procarcinogenic properties. Because increasing evidence show the role of immune environment and especially of antitumor T-cells in CRC development, we investigated the impact of CoPEC on these cells in human CRC and in the APCMin/+ mice colon. T-cell density was evaluated by immunohistochemistry in human tumors known for their CoPEC status. APCmin/+ mice were chronically infected with a CoPEC strain (11G5). Immune cells (neutrophils and T-cell populations) were then quantified by immunofluorescent staining of the colon. The quantification of lymphoid populations was also performed in the mesenteric lymph nodes (MLNs). Here, we show that the colonization of CRC patients by CoPEC is associated with a decrease of tumor-infiltrating T lymphocytes (CD3+ T-cells). Similarly, we demonstrated, in mice, that CoPEC chronic infection decreases CD3+ and CD8+ T-cells and increases colonic inflammation. In addition, we noticed a significant decrease in antitumor T-cells in the MLNs of CoPEC-infected mice compared to that of controls. Moreover, we show that CoPEC infection decreases the antimouse PD-1 immunotherapy efficacy in MC38 tumor model. Our findings suggest that CoPEC could promote a procarcinogenic immune environment through impairment of antitumor T-cell response, leading to tumoral resistance to immunotherapy. CoPEC could thus be a new biomarker predicting the anti-PD-1 response in CRC.


Asunto(s)
Neoplasias del Colon/terapia , Resistencia a Antineoplásicos/inmunología , Escherichia coli/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Péptidos/metabolismo , Policétidos/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Neoplasias del Colon/patología , Femenino , Humanos , Inmunoterapia/métodos , Recuento de Linfocitos , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral/inmunología
3.
J Virol ; 87(5): 2781-90, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23269798

RESUMEN

Vaccinia virus (VV) is an enveloped DNA virus from the poxvirus family and has played a crucial role in the eradication of smallpox. It continues to be used in immunotherapy for the prevention of infectious diseases and treatment of cancer. However, the mechanisms of poxvirus entry, the host factors that affect viral virulence, and the reasons for its natural tropism for tumor cells are incompletely understood. By studying the effect of hypoxia on VV infection, we found that vascular endothelial growth factor A (VEGF-A) augments oncolytic VV cytotoxicity. VEGF derived from tumor cells acts to increase VV internalization, resulting in increased replication and cytotoxicity in an AKT-dependent manner in both tumor cells and normal respiratory epithelial cells. Overexpression of VEGF also enhances VV infection within tumor tissue in vivo after systemic delivery. These results highlight the importance of VEGF expression in VV infection and have potential implications for the design of new strategies to prevent poxvirus infection and the development of future generations of oncolytic VV in combination with conventional or biological therapies.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt/metabolismo , Virus Vaccinia/patogenicidad , Factor A de Crecimiento Endotelial Vascular/metabolismo , Internalización del Virus , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/virología , Línea Celular Tumoral , Células Epiteliales/virología , Genes Reporteros , Humanos , Hipoxia , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Interferencia de ARN , ARN Interferente Pequeño , Mucosa Respiratoria/virología , Vaccinia/metabolismo , Vaccinia/virología , Virus Vaccinia/genética , Factor A de Crecimiento Endotelial Vascular/genética , Tropismo Viral , Replicación Viral/genética
4.
Life Sci ; 327: 121826, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37270172

RESUMEN

AIMS: Rheumatoid arthritis is an autoimmune disease which induces chronic inflammation and increases the risk for sarcopenia and metabolic abnormalities. Nutritional strategies using omega 3 polyunsaturated fatty acids could be proposed to alleviate inflammation and improve the maintenance of lean mass. Independently, pharmacological agents targeting key molecular regulators of the pathology such as TNF alpha could be proposed, but multiple therapies are frequently necessary increasing the risk for toxicity and adverse effects. The aim of the present study was to explore if the combination of an anti-TNF therapy (Etanercept) with dietary supplementation with omega 3 PUFA could prevent pain and metabolic effects of RA. MATERIALS AND METHODS: RA was induced using collagen-induced arthritis (CIA) in rats to explore of supplementation with docosahexaenoic acid, treatment with etanercept or their association could alleviate symptoms of RA (pain, dysmobility), sarcopenia and metabolic alterations. KEY FINDINGS: We observed that Etanercept had major benefits on pain and RA scoring index. However, DHA could reduce the impact on body composition and metabolic alterations. SIGNIFICANCE: This study revealed for the first time that nutritional supplementation with omega 3 fatty acid could reduce some symptoms of rheumatoid arthritis and be an effective preventive treatment in patients who do not need pharmacological therapy, but no sign of synergy with an anti-TNF agent was observed.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ácidos Grasos Omega-3 , Sarcopenia , Ratas , Animales , Etanercept/farmacología , Etanercept/uso terapéutico , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Inhibidores del Factor de Necrosis Tumoral , Artritis Reumatoide/tratamiento farmacológico , Ácidos Grasos Omega-3/uso terapéutico , Inflamación , Dolor/tratamiento farmacológico
5.
Cancer Sci ; 103(6): 1105-10, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22448775

RESUMEN

Integrin α(v)ß(3) expression is upregulated during tumor growth and invasion in newly formed endothelial cells in tumor neovasculature and in some tumor cells. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin α(v)ß(3) in vitro and in vivo. When labeled with indium-111, the RAFT-RGD is partially reabsorbed and trapped in the kidneys, limiting its use for further internal targeted radiotherapy and imaging investigations. We studied the effect of Gelofusine on RAFT-RGD renal retention in tumor-bearing mice. Mice were imaged using single photon emission computed tomography and optical imaging 1 and 24 h following tracer injection. Distribution of RAFT-RGD was further investigated by tissue removal and direct counting of the tracer. Kidney sections were analyzed by confocal microscopy. Gelofusine significantly induced a >50% reduction of the renal reabsorption of (111)In-DOTA-RAFT-RGD and A700-RAFT-RGD, without affecting tumor uptake. Injection of Gelofusine significantly reduced the renal retention of labeled RAFT-RGD, while increasing the tumor over healthy tissue ratio. These results will lead to the development of future therapeutic approaches.


Asunto(s)
Radioisótopos de Indio/farmacocinética , Integrina alfaVbeta3/metabolismo , Riñón/metabolismo , Compuestos Organometálicos/farmacocinética , Péptidos Cíclicos/farmacocinética , Poligelina/farmacología , Animales , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes , Células HEK293 , Humanos , Indio/metabolismo , Radioisótopos de Indio/metabolismo , Tasa de Depuración Metabólica , Ratones , Ratones Desnudos , Imagen Multimodal , Compuestos Organometálicos/metabolismo , Péptidos Cíclicos/metabolismo , Tomografía de Emisión de Positrones , Distribución Tisular , Tomografía Computarizada por Rayos X
6.
Sci Rep ; 12(1): 8146, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581224

RESUMEN

With the emergence of disease modifying osteoarthritis drugs (DMOAD), imaging methods to quantitatively demonstrate their efficacy and to monitor osteoarthritis progression at the functional level are urgently needed. Our group showed that articular cartilage can be quantitatively assessed in nuclear medicine imaging by our radiotracer 99mTc-NTP 15-5 targeting cartilage proteoglycans. In this work, surgically induced DMM mice were treated with sprifermin or saline. We investigated cartilage remodelling in the mice knees by 99mTc-NTP 15-5 SPECT-CT imaging over 24 weeks after surgery, as wells as proteoglycan biochemical assays. OA alterations were scored by histology according to OARSI guidelines. A specific accumulation of 99mTc-NTP 15-5 in cartilage joints was evidenced in vivo by SPECT-CT imaging as early as 30 min post-iv injection. In DMM, 99mTc-NTP 15-5 accumulation in cartilage within the operated joints, relative to contralateral ones, was observed to initially increase then decrease as pathology progressed. Under sprifermin, 99mTc-NTP 15-5 uptake in pathological knees was significantly increased compared to controls, at 7-, 12- and 24-weeks, and consistent with proteoglycan increase measured 5 weeks post-surgery, as a sign of cartilage matrix remodelling. Our work highlights the potential of 99mTc-NTP 15-5 as an imaging-based companion to monitor cartilage remodelling in OA and DMOAD response.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos , Compuestos Heterocíclicos con 1 Anillo , Indicadores y Reactivos , Ratones , Osteoartritis/diagnóstico por imagen , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Proteoglicanos , Compuestos de Amonio Cuaternario
7.
Pain ; 163(7): e837-e849, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561389

RESUMEN

ABSTRACT: Rheumatoid arthritis is frequently associated with chronic pain that still remains difficult to treat. Targeting nerve growth factor (NGF) seems very effective to reduce pain in at least osteoarthritis and chronic low back pain but leads to some potential adverse events. Our aim was to better understand the involvement of the intracellular signalling pathways activated by NGF through its specific tyrosine kinase type A (TrkA) receptor in the pathophysiology of rheumatoid arthritis using the complete Freund adjuvant model in our knock-in TrkA/C mice. Our multimodal study demonstrated that knock-in TrkA/C mice exhibited a specific decrease of mechanical allodynia, weight-bearing deficit, peptidergic (CGRP+) and sympathetic (TH+) peripheral nerve sprouting in the joints, a reduction in osteoclast activity and bone resorption markers, and a decrease of CD68-positive cells in the joint with no apparent changes in joint inflammation compared with wild-type mice after arthritis. Finally, transcriptomic analysis shows several differences in dorsal root ganglion mRNA expression of putative mechanotransducers, such as acid-sensing ionic channel 3 and TWIK-related arachidonic acid activated K+ channel, as well as intracellular pathways, such as c-Jun, in the joint or dorsal root ganglia. These results suggest that TrkA-specific intracellular signalling pathways are specifically involved in mechanical hypersensitivity and bone alterations after arthritis using TrkA/C mice.


Asunto(s)
Artritis Reumatoide , Hiperalgesia , Receptor trkA , Transducción de Señal , Animales , Artritis Reumatoide/complicaciones , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Ratones , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptor trkA/genética
8.
Pain ; 163(8): 1542-1559, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34924556

RESUMEN

ABSTRACT: Several bone conditions, eg, bone cancer, osteoporosis, and rheumatoid arthritis (RA), are associated with a risk of developing persistent pain. Increased osteoclast activity is often the hallmark of these bony pathologies and not only leads to bone remodeling but is also a source of pronociceptive factors that sensitize the bone-innervating nociceptors. Although historically bone loss in RA has been believed to be a consequence of inflammation, both bone erosion and pain can occur years before the symptom onset. Here, we have addressed the disconnection between inflammation, pain, and bone erosion by using a combination of 2 monoclonal antibodies isolated from B cells of patients with RA. We have found that mice injected with B02/B09 monoclonal antibodies (mAbs) developed a long-lasting mechanical hypersensitivity that was accompanied by bone erosion in the absence of joint edema or synovitis. Intriguingly, we have noted a lack of analgesic effect of naproxen and a moderate elevation of few inflammatory factors in the ankle joints suggesting that B02/B09-induced pain-like behavior does not depend on inflammatory processes. By contrast, we found that inhibiting osteoclast activity and acid-sensing ion channel 3 signaling prevented the development of B02/B09-mediated mechanical hypersensitivity. Moreover, we have identified secretory phospholipase A2 and lysophosphatidylcholine 16:0 as critical components of B02/B09-induced pain-like behavior and shown that treatment with a secretory phospholipase A2 inhibitor reversed B02/B09-induced mechanical hypersensitivity and bone erosion. Taken together, our study suggests a potential link between bone erosion and pain in a state of subclinical inflammation and offers a step forward in understanding the mechanisms of bone pain in diseases such as RA.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Artritis Reumatoide , Osteoclastos , Dolor , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Artritis Reumatoide/complicaciones , Artritis Reumatoide/tratamiento farmacológico , Inflamación/complicaciones , Ratones , Osteoclastos/patología , Dolor/patología
9.
J Mater Chem B ; 9(36): 7423-7434, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34373887

RESUMEN

Over the last decade, upconversion nanoparticles (UCNP) have been widely investigated in nanomedicine due to their high potential as imaging agents in the near-infrared (NIR) optical window of biological tissues. Here, we successfully develop active targeted UCNP as potential probes for dual NIR-NIR fluorescence and radioactive-guided surgery of prostate-specific membrane antigen (PSMA)(+) prostate cancers. We designed a one-pot thermolysis synthesis method to obtain oleic acid-coated spherical NaYF4:Yb,Tm@NaYF4 core/shell UCNP with narrow particle size distribution (30.0 ± 0.1 nm, as estimated by SAXS analysis) and efficient upconversion luminescence. Polyethylene glycol (PEG) ligands bearing different anchoring groups (phosphate, bis- and tetra-phosphonate-based) were synthesized and used to hydrophilize the UCNP. DLS studies led to the selection of a tetra-phosphonate PEG(2000) ligand affording water-dispersible UCNP with sustained colloidal stability in several aqueous media. PSMA-targeting ligands (i.e., glutamate-urea-lysine derivatives called KuEs) and fluorescent or radiolabelled prosthetic groups were grafted onto the UCNP surface by strain-promoted azide-alkyne cycloaddition (SPAAC). These UCNP, coated with 10 or 100% surface density of KuE ligands, did not induce cytotoxicity over 24 h incubation in LNCaP-Luc or PC3-Luc prostate cancer cell lines or in human fibroblasts for any of the concentrations evaluated. Competitive binding assays and flow cytometry demonstrated the excellent affinity of UCNP@KuE for PSMA-positive LNCaP-Luc cells compared with non-targeted UCNP@CO2H. Furthermore, the binding of UCNP@KuE to prostate tumour cells was positively correlated with the surface density of PSMA-targeting ligands and maintained after 125I-radiolabelling. Finally, a preliminary biodistribution study in LNCaP-Luc-bearing mice demonstrated the radiochemical stability of non-targeted [125I]UCNP paving the way for future in vivo assessments.


Asunto(s)
Antígenos de Superficie/metabolismo , Materiales Biocompatibles Revestidos/química , Glutamato Carboxipeptidasa II/metabolismo , Nanopartículas de Magnetita/química , Animales , Antígenos de Superficie/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/metabolismo , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/uso terapéutico , Reacción de Cicloadición , Fluoruros/química , Glutamato Carboxipeptidasa II/química , Humanos , Ligandos , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/toxicidad , Masculino , Ratones , Ácidos Oléicos/química , Imagen Óptica , Tamaño de la Partícula , Polietilenglicoles/química , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/cirugía , Tulio/química , Distribución Tisular , Iterbio/química , Itrio/química
10.
Eur J Nucl Med Mol Imaging ; 37(7): 1377-85, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20140612

RESUMEN

PURPOSE: In vivo imaging of the spread of oncolytic viruses using the Na/I symporter (NIS) has been proposed. Here, we assessed whether the presence of NIS in the viral genome affects the therapeutic efficacy of the oncolytic adenovirus dl922-947 following intraperitoneal administration, in a mouse model of peritoneal ovarian carcinoma. METHODS: We generated AdAM7, a dl922-947 oncolytic adenovirus encoding the NIS coding sequence. Iodide uptake, NIS expression, infectivity and cell-killing activity of AdAM7, as well as that of relevant controls, were determined in vitro. In vivo, the propagation of this virus in the peritoneal cavity of tumour-bearing mice was determined using SPECT/CT imaging and its therapeutic efficacy was evaluated. RESULTS: In vitro infection of ovarian carcinoma IGROV-1 cells with ADAM7 led to functional expression of NIS. However, the insertion of NIS into the viral genome resulted in a loss of efficacy of the virus in terms of replication and cytotoxicity. In vivo, on SPECT/CT imaging AdAM7 was only detectable in the peritoneal cavity of animals bearing peritoneal ovarian tumours for up to 5 days after intraperitoneal administration. Therapeutic experiments in vivo demonstrated that AdAM7 is as potent as its NIS-negative counterpart. CONCLUSION: This study demonstrated that despite the detrimental effect observed in vitro, insertion of the reporter gene NIS in an oncolytic adenovirus did not affect its therapeutic efficacy in vivo. We conclude that NIS is a highly relevant reporter gene to monitor the fate of oncolytic adenovectors in live subjects.


Asunto(s)
Adenoviridae/fisiología , Genes Reporteros/genética , Imagen Molecular/métodos , Virus Oncolíticos/fisiología , Neoplasias Peritoneales/virología , Simportadores/genética , Replicación Viral , Adenoviridae/genética , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Genoma Viral/genética , Inyecciones Intraperitoneales , Ratones , Virus Oncolíticos/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Neoplasias Ováricas/virología , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA