Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 291(49): 25516-25528, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27780869

RESUMEN

URI (unconventional prefoldin RPB5 interactor protein) is an unconventional prefoldin, RNA polymerase II interactor that functions as a transcriptional repressor and is part of a larger nuclear protein complex. The components of this complex and the mechanism of transcriptional repression have not been characterized. Here we show that KAP1 (KRAB-associated protein 1) and the protein phosphatase PP2A interact with URI. Mechanistically, we show that KAP1 phosphorylation is decreased following recruitment of PP2A by URI. We functionally characterize the novel URI-KAP1-PP2A complex, demonstrating a role of URI in retrotransposon repression, a key function previously demonstrated for the KAP1-SETDB1 complex. Microarray analysis of annotated transposons revealed a selective increase in the transcription of LINE-1 and L1PA2 retroelements upon knockdown of URI. These data unveil a new nuclear function of URI and identify a novel post-transcriptional regulation of KAP1 protein that may have important implications in reactivation of transposable elements in prostate cancer cells.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Represoras/metabolismo , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Complejos Multiproteicos/genética , Proteínas de Neoplasias/genética , Fosforilación/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteína Fosfatasa 2/genética , Proteínas Represoras/genética , Retroelementos , Proteína 28 que Contiene Motivos Tripartito
2.
Open Biol ; 14(6): 230363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889796

RESUMEN

We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious viruses in multiple cell culture models for all six families of viruses causing most respiratory diseases in humans. In animals, this chemotype has been demonstrated efficacious for porcine epidemic diarrhoea virus (a coronavirus) and respiratory syncytial virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral life cycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. An advanced analog, PAV-104, is shown to be selective for the virally modified target, thereby avoiding host toxicity. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.


Asunto(s)
Antivirales , Antivirales/farmacología , Antivirales/química , Humanos , Animales , Proteínas 14-3-3/metabolismo , Complejos Multiproteicos/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Línea Celular
3.
bioRxiv ; 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34931190

RESUMEN

We present a small molecule chemotype, identified by an orthogonal drug screen, exhibiting nanomolar activity against members of all the six viral families causing most human respiratory viral disease, with a demonstrated barrier to resistance development. Antiviral activity is shown in mammalian cells, including human primary bronchial epithelial cells cultured to an air-liquid interface and infected with SARS-CoV-2. In animals, efficacy of early compounds in the lead series is shown by survival (for a coronavirus) and viral load (for a paramyxovirus). The drug target is shown to include a subset of the protein 14-3-3 within a transient host multi-protein complex containing components implicated in viral lifecycles and in innate immunity. This multi-protein complex is modified upon viral infection and largely restored by drug treatment. Our findings suggest a new clinical therapeutic strategy for early treatment upon upper respiratory viral infection to prevent progression to lower respiratory tract or systemic disease. One Sentence Summary: A host-targeted drug to treat all respiratory viruses without viral resistance development.

4.
Mob DNA ; 12(1): 5, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563338

RESUMEN

BACKGROUND: Long INterspersed Element-1 (LINE-1) is an autonomous retroelement able to "copy-and-paste" itself into new loci of the host genome through a process called retrotransposition. The LINE-1 bicistronic mRNA codes for two proteins, ORF1p, a nucleic acid chaperone, and ORF2p, a protein with endonuclease and reverse transcriptase activity. Both proteins bind LINE-1 mRNA in cis and are necessary for retrotransposition. While LINE-1 transcription is usually repressed in most healthy somatic cells through a plethora of mechanisms, ORF1p expression has been observed in nearly 50% of tumors, and new LINE-1 insertions have been documented in a similar fraction of tumors, including prostate cancer. RESULTS: Here, we utilized RNA ImmunoPrecipitation (RIP) and the L1EM analysis software to identify ORF1p bound RNA in prostate cancer cells. We identified LINE-1 loci that were expressed in parental androgen sensitive and androgen independent clonal derivatives. In all androgen independent cells, we found higher levels of LINE-1 RNA, as well as unique expression patterns of LINE-1 loci. Interestingly, we observed that ORF1p bound many non-LINE-1 mRNA in all prostate cancer cell lines evaluated, and polyA RNA, and RNA localized in p-bodies were especially enriched. Furthermore, the expression levels of RNAs identified in our ORF1p RIP correlated with RNAs expressed in LINE-1 positive tumors from The Cancer Genome Atlas (TCGA). CONCLUSION: Our results show a significant remodeling of LINE-1 loci expression in androgen independent cell lines when compared to parental androgen dependent cells. Additionally, we found that ORF1p bound a significant amount of non-LINE-1 mRNA, and that the enriched ORF1p bound mRNAs are also amplified in LINE-1 expressing TCGA prostate tumors, indicating the biological relevance of our findings to prostate cancer.

5.
Mob DNA ; 12(1): 21, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34425899

RESUMEN

BACKGROUND: The autonomous retroelement Long Interspersed Element-1 (LINE-1) mobilizes though a copy and paste mechanism using an RNA intermediate (retrotransposition). Throughout human evolution, around 500,000 LINE-1 sequences have accumulated in the genome. Most of these sequences belong to ancestral LINE-1 subfamilies, including L1PA2-L1PA7, and can no longer mobilize. Only a small fraction of LINE-1 sequences, approximately 80 to 100 copies belonging to the L1Hs subfamily, are complete and still capable of retrotransposition. While silenced in most cells, many questions remain regarding LINE-1 dysregulation in cancer cells. RESULTS: Here, we optimized CRISPR Cas9 gRNAs to specifically target the regulatory sequence of the L1Hs 5'UTR promoter. We identified three gRNAs that were more specific to L1Hs, with limited binding to older LINE-1 sequences (L1PA2-L1PA7). We also adapted the C-BERST method (dCas9-APEX2 Biotinylation at genomic Elements by Restricted Spatial Tagging) to identify LINE-1 transcriptional regulators in cancer cells. Our LINE-1 C-BERST screen revealed both known and novel LINE-1 transcriptional regulators, including CTCF, YY1 and DUSP1. CONCLUSION: Our optimization and evaluation of gRNA specificity and application of the C-BERST method creates a tool for studying the regulatory mechanisms of LINE-1 in cancer. Further, we identified the dual specificity protein phosphatase, DUSP1, as a novel regulator of LINE-1 transcription.

6.
Mob DNA ; 10: 51, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31890047

RESUMEN

BACKGROUND: We previously examined expression of Long Interspersed Element-1 (LINE-1) in a variety of prostate cancer cells including hormone-dependent LNCaP cells. These studies demonstrated expression and sub-cellular localization of LINE-1 proteins, ORF1p, with antibody 4H1, and ORF2p, with antibody chA1-L1. RESULTS: Here we conduct immunoprecipitation/mass spectrometry analysis using chA1-L1 antibody against ORF2p in LNCaP cells. Our results indicate that antigens detected by the antibody include the transcriptional regulator BCLAF1. We show that chA1-L1 recognizes BCLAF1 using siRNA knockdown and overexpression of a tagged BCLAF1. We also show that chA1-L1 antibody recognizes ORF2p in HEK293 cells overexpressing LINE-1. Further, analysis of ORF2p (chA1-L1) and BCLAF1 foci using immunofluorescence in LNCaP cells showed significant colocalization. CONCLUSIONS: Overall, our findings indicate that chA1-L1 antibody recognizes both BCLAF1 and ORF2p but the majority of antigen recognized in LNCaP cells is BCLAF1.

7.
Mob DNA ; 9: 1, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29308092

RESUMEN

BACKGROUND: Long Interspersed Nuclear Element-1 (LINE-1) is an autonomous retrotransposon that generates new genomic insertions through the retrotransposition of a RNA intermediate. Expression of LINE-1 is tightly repressed in most somatic tissues to prevent DNA damage and ensure genomic integrity. However, the reactivation of LINE-1 has been documented in cancer and the role of LINE-1 protein expression and retrotransposition has become of interest in the development, progression, and adaptation of many epithelial neoplasms, including prostate cancer. RESULTS: Here, we examined endogenous LINE-1 protein expression and localization in a panel of prostate cancer cells and observed a diverse range of LINE-1 expression patterns between cell lines. Subcellular localization of LINE-1 proteins, ORF1p and ORF2p, revealed distinct expression patterns. ORF1p, a nucleic acid chaperone that binds LINE-1 mRNA, was predominantly expressed in the cytoplasm, with minor localization in the nucleus. ORF2p, containing endonuclease and reverse transcriptase domains, exhibited punctate foci in the nucleus and also displayed co-localization with PCNA and γH2AX. Using a retrotransposition reporter assay, we found variations in LINE-1 retrotransposition between cell lines. CONCLUSIONS: Overall, our findings reveal new insight into the expression and retrotransposition of LINE-1 in prostate cancer. The prostate cancer cells we investigated provide a unique model for investigating endogenous LINE-1 activity and provide a functional model for studying LINE-1 mechanisms in prostate cancer.

8.
Nat Commun ; 9(1): 4396, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30352998

RESUMEN

New chemical inhibitors of protein-protein interactions are needed to propel advances in molecular pharmacology. Peptoids are peptidomimetic oligomers with the capability to inhibit protein-protein interactions by mimicking protein secondary structure motifs. Here we report the in silico design of a macrocycle primarily composed of peptoid subunits that targets the ß-catenin:TCF interaction. The ß-catenin:TCF interaction plays a critical role in the Wnt signaling pathway which is over-activated in multiple cancers, including prostate cancer. Using the Rosetta suite of protein design algorithms, we evaluate how different macrocycle structures can bind a pocket on ß-catenin that associates with TCF. The in silico designed macrocycles are screened in vitro using luciferase reporters to identify promising compounds. The most active macrocycle inhibits both Wnt and AR-signaling in prostate cancer cell lines, and markedly diminishes their proliferation. In vivo potential is demonstrated through a zebrafish model, in which Wnt signaling is potently inhibited.


Asunto(s)
Compuestos Macrocíclicos/farmacología , Péptidos/farmacología , Peptoides/farmacología , Neoplasias de la Próstata/metabolismo , Factores de Transcripción TCF/metabolismo , beta Catenina/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Embrión no Mamífero/metabolismo , Ojo/embriología , Células HEK293 , Humanos , Masculino , Fenotipo , Neoplasias de la Próstata/patología , Unión Proteica/efectos de los fármacos , Receptores Androgénicos/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Vía de Señalización Wnt , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA