Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO Rep ; 17(7): 1044-60, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27266708

RESUMEN

Selective autophagy is the mechanism by which large cargos are specifically sequestered for degradation. The structural details of cargo and receptor assembly giving rise to autophagic vesicles remain to be elucidated. We utilize the yeast cytoplasm-to-vacuole targeting (Cvt) pathway, a prototype of selective autophagy, together with a multi-scale analysis approach to study the molecular structure of Cvt vesicles. We report the oligomeric nature of the major Cvt cargo Ape1 with a combined 2.8 Å X-ray and negative stain EM structure, as well as the secondary cargo Ams1 with a 6.3 Å cryo-EM structure. We show that the major dodecameric cargo prApe1 exhibits a tendency to form higher-order chain structures that are broken upon interaction with the receptor Atg19 in vitro The stoichiometry of these cargo-receptor complexes is key to maintaining the size of the Cvt aggregate in vivo Using correlative light and electron microscopy, we further visualize key stages of Cvt vesicle biogenesis. Our findings suggest that Atg19 interaction limits Ape1 aggregate size while serving as a vehicle for vacuolar delivery of tetrameric Ams1.


Asunto(s)
Autofagia , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Membranas/metabolismo , Modelos Biológicos , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética
2.
Elife ; 92020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33016878

RESUMEN

Filoviruses such as Ebola and Marburg virus bud from the host membrane as enveloped virions. This process is achieved by the matrix protein VP40. When expressed alone, VP40 induces budding of filamentous virus-like particles, suggesting that localization to the plasma membrane, oligomerization into a matrix layer, and generation of membrane curvature are intrinsic properties of VP40. There has been no direct information on the structure of VP40 matrix layers within viruses or virus-like particles. We present structures of Ebola and Marburg VP40 matrix layers in intact virus-like particles, and within intact Marburg viruses. VP40 dimers assemble extended chains via C-terminal domain interactions. These chains stack to form 2D matrix lattices below the membrane surface. These lattices form a patchwork assembly across the membrane and suggesting that assembly may begin at multiple points. Our observations define the structure and arrangement of the matrix protein layer that mediates formation of filovirus particles.


Asunto(s)
Ebolavirus/fisiología , Marburgvirus/fisiología , Multimerización de Proteína , Proteínas de la Matriz Viral/química , Membrana Celular/fisiología , Ebolavirus/química , Marburgvirus/química
3.
Elife ; 62017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29148969

RESUMEN

COPI-coated vesicles mediate trafficking within the Golgi apparatus and from the Golgi to the endoplasmic reticulum. The structures of membrane protein coats, including COPI, have been extensively studied with in vitro reconstitution systems using purified components. Previously we have determined a complete structural model of the in vitro reconstituted COPI coat (Dodonova et al., 2017). Here, we applied cryo-focused ion beam milling, cryo-electron tomography and subtomogram averaging to determine the native structure of the COPI coat within vitrified Chlamydomonas reinhardtii cells. The native algal structure resembles the in vitro mammalian structure, but additionally reveals cargo bound beneath ß'-COP. We find that all coat components disassemble simultaneously and relatively rapidly after budding. Structural analysis in situ, maintaining Golgi topology, shows that vesicles change their size, membrane thickness, and cargo content as they progress from cis to trans, but the structure of the coat machinery remains constant.


Asunto(s)
Chlamydomonas reinhardtii/química , Proteína Coat de Complejo I/química , Vesículas Cubiertas por Proteínas de Revestimiento/química , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Modelos Moleculares , Conformación Proteica
4.
Elife ; 62017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29019322

RESUMEN

The ESCRT machinery mediates reverse membrane scission. By quantitative fluorescence lattice light-sheet microscopy, we have shown that ESCRT-III subunits polymerize rapidly on yeast endosomes, together with the recruitment of at least two Vps4 hexamers. During their 3-45 s lifetimes, the ESCRT-III assemblies accumulated 75-200 Snf7 and 15-50 Vps24 molecules. Productive budding events required at least two additional Vps4 hexamers. Membrane budding was associated with continuous, stochastic exchange of Vps4 and ESCRT-III components, rather than steady growth of fixed assemblies, and depended on Vps4 ATPase activity. An all-or-none step led to final release of ESCRT-III and Vps4. Tomographic electron microscopy demonstrated that acute disruption of Vps4 recruitment stalled membrane budding. We propose a model in which multiple Vps4 hexamers (four or more) draw together several ESCRT-III filaments. This process induces cargo crowding and inward membrane buckling, followed by constriction of the nascent bud neck and ultimately ILV generation by vesicle fission.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tomografía con Microscopio Electrónico , Microscopía Fluorescente
5.
Curr Opin Virol ; 18: 27-35, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27010119

RESUMEN

Retroviruses such as HIV-1 assemble and bud from infected cells in an immature, non-infectious form. Subsequently, a series of proteolytic cleavages catalysed by the viral protease leads to a spectacular structural rearrangement of the viral particle into a mature form that is competent to fuse with and infect a new cell. Maturation involves changes in the structures of protein domains, in the interactions between protein domains, and in the architecture of the viral components that are assembled by the proteins. Tight control of proteolytic cleavages at different sites is required for successful maturation, and the process is a major target of antiretroviral drugs. Here we will describe what is known about the structures of immature and mature retrovirus particles, and about the maturation process by which one transitions into the other. Despite a wealth of available data, fundamental questions about retroviral maturation remain unanswered.


Asunto(s)
VIH-1/fisiología , Retroviridae/fisiología , Proteínas Virales/metabolismo , Ensamble de Virus , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Humanos , Péptido Hidrolasas/metabolismo , Proteolisis , Retroviridae/química , Retroviridae/genética , Proteínas Virales/química , Proteínas Virales/genética , Virión/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
6.
Elife ; 52016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27341079

RESUMEN

In a previous paper (Picco et al., 2015), the dynamic architecture of the protein machinery during clathrin-mediated endocytosis was visualized using a new live imaging and particle tracking method. Here, by combining this approach with correlative light and electron microscopy, we address the role of clathrin in this process. During endocytosis, clathrin forms a cage-like coat around the membrane and associated protein components. There is growing evidence that clathrin does not determine the membrane morphology of the invagination but rather modulates the progression of endocytosis. We investigate how the deletion of clathrin heavy chain impairs the dynamics and the morphology of the endocytic membrane in budding yeast. Our results show that clathrin is not required for elongating or shaping the endocytic membrane invagination. Instead, we find that clathrin contributes to the regularity of vesicle scission and thereby to controlling vesicle size.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/ultraestructura , Clatrina/metabolismo , Endocitosis , Saccharomyces cerevisiae/metabolismo , Clatrina/genética , Eliminación de Gen , Imagen Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA