Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0299825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593174

RESUMEN

Chilling sensitivity is one of the greatest challenges affecting the marketability and profitability of sweet basil (Ocimum basilicum L.) in the US and worldwide. Currently, there are no sweet basils commercially available with significant chilling tolerance and traditional aroma profiles. This study was conducted to identify quantitative trait loci (QTLs) responsible for chilling tolerance and aroma compounds in a biparental mapping population, including the Rutgers advanced breeding line that served as a chilling tolerant parent, 'CB15', the chilling sensitive parent, 'Rutgers Obsession DMR' and 200 F2 individuals. Chilling tolerance was assessed by percent necrosis using machine learning and aroma profiling was evaluated using gas chromatography (GC) mass spectrometry (MS). Single nucleotide polymorphism (SNP) markers were generated from genomic sequences derived from double digestion restriction-site associated DNA sequencing (ddRADseq) and converted to genotype data using a reference genome alignment. A genetic linkage map was constructed and five statistically significant QTLs were identified in response to chilling temperatures with possible interactions between QTLs. The QTL on LG24 (qCH24) demonstrated the largest effect for chilling response and was significant in all three replicates. No QTLs were identified for linalool, as the population did not segregate sufficiently to detect this trait. Two significant QTLs were identified for estragole (also known as methyl chavicol) with only qEST1 on LG1 being significant in the multiple-QTL model (MQM). QEUC26 was identified as a significant QTL for eucalyptol (also known as 1,8-cineole) on LG26. These QTLs may represent key mechanisms for chilling tolerance and aroma in basil, providing critical knowledge for future investigation of these phenotypic traits and molecular breeding.


Asunto(s)
Ocimum basilicum , Sitios de Carácter Cuantitativo , Humanos , Ocimum basilicum/genética , Fitomejoramiento , Mapeo Cromosómico/métodos , Fenotipo , Genómica , Polimorfismo de Nucleótido Simple , Ligamiento Genético
2.
Front Plant Sci ; 14: 1237577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745993

RESUMEN

Basil (Ocimum basilicum L.) is a popular specialty crop known for its use as a culinary herb and medicinal plant around the world. However, its profitability and availability are limited by a short postharvest shelf life due to poor handling, cold sensitivity and microbial contamination. Here, we comprehensively review the research on pre- and postharvest techniques that extend the shelf life of basil to serve as a practical tool for growers, distributors, retailers and scientists. Modifications to postharvest storage conditions, pre- and postharvest treatments, harvest time and preharvest production methods have been found to directly impact the quality of basil and its shelf life. The most effective strategies for extending the shelf life and improving the quality of basil are discussed and promising strategies that research and industry employ are identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA