Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nanomedicine ; 42: 102515, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35074500

RESUMEN

Monocyte-induced endothelial cell inflammation is associated with multiple pathological conditions, and extracellular vesicles (EVs) are essential nanosized components of intercellular communication. EVs derived from endotoxin-stimulated monocytes were previously shown to carry pro-inflammatory proteins and RNAs. The role of glucose transporter-1 (GLUT-1) and glycan features in monocyte-derived EV-induced endothelial cell inflammation remains largely unexplored. This study demonstrates that EVs derived from endotoxin-stimulated monocytes activate inflammatory pathways in endothelial cells, which are partially attributed to GLUT-1. Alterations in glycan features and increased levels of GLUT-1 were observed in EVs derived from endotoxin-stimulated monocytes. Notably, inhibition of EV-associated GLUT-1, through the use of fasentin, suppressed EV-induced inflammatory cytokines in recipient endothelial cells.


Asunto(s)
Vesículas Extracelulares , Transportador de Glucosa de Tipo 1 , Inflamación , Monocitos , Polisacáridos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotoxinas/farmacología , Vesículas Extracelulares/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Monocitos/metabolismo , Monocitos/patología , Polisacáridos/metabolismo
2.
Biotechnol Bioeng ; 116(2): 427-443, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30450542

RESUMEN

Human mesenchymal stem cells (hMSCs) are under intense study for applications of cell and gene therapeutics because of their unique immunomodulatory and regenerative properties. Safe and efficient genetic modification of hMSCs could increase their clinical potential by allowing functional expression of therapeutic transgenes or control over behavior and differentiation. Viral gene delivery is efficient, but suffers from safety issues, while nonviral methods are safe, but highly inefficient, especially in hMSCs. Our lab previously demonstrated that priming cells before delivery of DNA complexes with dexamethasone (DEX), an anti-inflammatory glucocorticoid drug, significantly increases hMSC transfection success. This work systematically investigates the mechanisms of hMSC transfection and DEX-mediated enhancement of transfection. Our results show that hMSC transfection and its enhancement by DEX are decreased by inhibiting classical intracellular transport and nuclear import pathways, but DEX transfection priming does not increase cellular or nuclear internalization of plasmid DNA (pDNA). We also show that hMSC transgene expression is largely affected by pDNA promoter and enhancer sequence changes, but DEX-mediated enhancement of transfection is unaffected by any pDNA sequence changes. Furthermore, DEX-mediated transfection enhancement is not the result of increased transgene messenger RNA transcription or stability. However, DEX-priming increases total protein synthesis by preventing hMSC apoptosis induced by transfection, resulting in increased translation of transgenic protein. DEX may also promote further enhancement of transgenic reporter enzyme activity by other downstream mechanisms. Mechanistic studies of nonviral gene delivery will inform future rationally designed technologies for safe and efficient genetic modification of clinically relevant cell types.


Asunto(s)
Dexametasona/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Transfección/métodos , Transformación Genética , Células Cultivadas , Expresión Génica , Humanos
3.
J Extracell Vesicles ; 12(2): e12309, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732941

RESUMEN

Extracellular vesicles (EVs) are cell-released, heterogenous nanoparticles that play important roles in (patho)physiological processes through intercellular communication. EVs are often depicted as having a single lipid bilayer, but many studies have demonstrated the existence of multilayered EVs. There has been minimal inquiry into differences between unilamellar and multilamellar EVs in terms of biogenesis mechanisms and functional effects. This commentary speculates on potential causes and roles of multilamellar EVs and serves as a call to action for the research community to unravel the complex layers of EVs.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Comunicación Celular , Transporte Biológico
4.
Mol Ther Methods Clin Dev ; 18: 713-722, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32913879

RESUMEN

Human mesenchymal stem cells (hMSCs) are under study for cell and gene therapeutics because of their immunomodulatory and regenerative properties. Safe and efficient gene delivery could increase hMSC clinical potential by enabling expression of transgenes for control over factor production, behavior, and differentiation. Viral delivery is efficient but suffers from safety issues, while nonviral methods are safe but highly inefficient, especially in hMSCs. We previously demonstrated that priming cells with glucocorticoids (Gcs) before delivery of DNA complexes significantly increases hMSC transfection, which correlates with a rescue of transfection-induced metabolic and protein synthesis decline, and apoptosis. In this work, we show that transgene expression enhancement is mediated by transcriptional activation of endogenous hMSC genes by the cytosolic glucocorticoid receptor (cGR) and that transfection enhancement can be potentiated with a GR transcription-activation synergist. We demonstrate that the Gc-activated cGR modulates endogenous hMSC gene expression to ameliorate transfection-induced endoplasmic reticulum (ER) and oxidative stresses, apoptosis, and inflammatory responses to prevent hMSC metabolic and protein synthesis decline, resulting in enhanced transgene expression after nonviral gene delivery to hMSCs. These results provide insights important for rational design of more efficient nonviral gene delivery and priming techniques that could be utilized for clinical hMSC applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA