RESUMEN
Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton10-13.
Asunto(s)
Evolución Biológica , Briozoos , Fósiles , Animales , Australia , Briozoos/anatomía & histología , Briozoos/clasificación , China , Fenotipo , Filogenia , Factores de TiempoRESUMEN
Until recently, intricate details of the optical design of non-biomineralized arthropod eyes remained elusive in Cambrian Burgess-Shale-type deposits, despite exceptional preservation of soft-part anatomy in such Konservat-Lagerstätten. The structure and development of ommatidia in arthropod compound eyes support a single origin some time before the latest common ancestor of crown-group arthropods, but the appearance of compound eyes in the arthropod stem group has been poorly constrained in the absence of adequate fossils. Here we report 2-3-cm paired eyes from the early Cambrian (approximately 515 million years old) Emu Bay Shale of South Australia, assigned to the Cambrian apex predator Anomalocaris. Their preserved visual surfaces are composed of at least 16,000 hexagonally packed ommatidial lenses (in a single eye), rivalling the most acute compound eyes in modern arthropods. The specimens show two distinct taphonomic modes, preserved as iron oxide (after pyrite) and calcium phosphate, demonstrating that disparate styles of early diagenetic mineralization can replicate the same type of extracellular tissue (that is, cuticle) within a single Burgess-Shale-type deposit. These fossils also provide compelling evidence for the arthropod affinities of anomalocaridids, push the origin of compound eyes deeper down the arthropod stem lineage, and indicate that the compound eye evolved before such features as a hardened exoskeleton. The inferred acuity of the anomalocaridid eye is consistent with other evidence that these animals were highly mobile visual predators in the water column. The existence of large, macrophagous nektonic predators possessing sharp vision--such as Anomalocaris--within the early Cambrian ecosystem probably helped to accelerate the escalatory 'arms race' that began over half a billion years ago.
Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/fisiología , Evolución Biológica , Ojo Compuesto de los Artrópodos/anatomía & histología , Ojo Compuesto de los Artrópodos/fisiología , Fósiles , Visión Ocular/fisiología , Animales , Australia , Extinción Biológica , Sedimentos Geológicos , Historia Antigua , Conducta PredatoriaRESUMEN
The Cambrian explosion, one of the most consequential biological revolutions in Earth history, occurred in two phases separated by the Sinsk event, the first major extinction of the Phanerozoic. Trilobite fossil data show that Series 2 strata in the Ross Orogen, Antarctica, and Delamerian Orogen, Australia, record nearly identical and synchronous tectono-sedimentary shifts marking the Sinsk event. These resulted from an abrupt pulse of contractional supracrustal deformation on both continents during the Pararaia janeae trilobite Zone. The Sinsk event extinction was triggered by initial Ross/Delamerian supracrustal contraction along the edge of Gondwana, which caused a cascading series of geodynamic, paleoenvironmental, and biotic changes, including (i) loss of shallow marine carbonate habitats along the Gondwanan margin; (ii) tectonic transformation to extensional tectonics within the Gondwanan interior; (iii) extrusion of the Kalkarindji large igneous province; (iv) release of large volumes of volcanic gasses; and (v) rapid climatic change, including incursions of marine anoxic waters and collapse of shallow marine ecosystems.
RESUMEN
The shells of linguloid brachiopods such as Lingula and Discinisca are inorganic-organic nanocomposites with a mineral phase of calcium phosphate (Ca-phosphate). Collagen, the main extracellular matrix in Ca-phosphatic vertebrate skeletons, has not previously been clearly resolved at the molecular level in organophosphatic brachiopods. Here, modern and recently-alive linguliform brachiopod shells of Lingula and Discinisca have been studied by microRaman spectroscopy, Fourier transform infrared spectroscopy, field emission gun scanning electron microscopy, and thermal gravimetric analysis. For the first time, biomineralized collagen matrix and Ca-phosphate components were simultaneously identified, showing that the collagen matrix is an important moiety in organophosphatic brachiopod shells, in addition to prevalent chitin. Stabilized nanosized apatitic biominerals (up to â¼50 nm) permeate the framework of organic fibrils. There is a â¼2.5-fold higher wt% of carbonate (CO3 2-) in Lingula versus Discinisca shells. Both microRaman spectroscopy and infrared spectra show transient amorphous Ca-phosphate and octacalcium phosphate components. For the first time, trivalent moieties at â¼1660 cm-1 and divalent moieties at â¼1690 cm-1 in the amide I spectral region were identified. These are related to collagen cross-links that are abundant in mineralized tissues, and could be important features in the biostructural and mechanical properties of Ca-phosphate shell biominerals. This work provides a critical new understanding of organophosphatic brachiopod shells, which are some of the earliest examples of biomineralization in still-living animals that appeared in the Cambrian radiation.
RESUMEN
The Perseverance rover (Mars 2020) is equipped with an instrumental and analytical payload capable of identifying a broad range of organic molecules in geological samples. To determine the efficacy of these analytical techniques in recognizing important ecological and environmental signals in the rock record, this study utilized analogous equipment, including gas chromatography/mass spectrometry, Raman spectroscopy, X-ray fluorescence (XRF), Fourier transform infrared spectroscopy, along with macroscopic and petrographic observations, to examine early-middle Cambrian microbialites from the Arrowie Basin, South Australia. Morphological and petrographic observations of these carbonate successions reveal evidence of hypersaline-restricted environments. Microbialites have undergone moderate diagenesis, as supported by XRF data that show mineral assemblages, including celestine and the illitization of smectite. Raman spectral data, carbon preference indices of â¼1, and the methylphenanthrene index place the samples in the prehnite/pumpellyite metamorphic facies. Pristane and phytane are the only biomarkers that were detected in the least thermally mature samples. This research demonstrates a multitechnique approach that can yield significant geological, depositional, paleobiological, and diagenetic information that has important implications for planning future astrobiological exploration.
Asunto(s)
Medio Ambiente Extraterrestre , Sedimentos Geológicos/química , Marte , Alcanos/análisis , Australia del Sur , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría RamanRESUMEN
Parasite-host systems are pervasive in nature but are extremely difficult to convincingly identify in the fossil record. Here we report quantitative evidence of parasitism in the form of a unique, enduring life association between tube-dwelling organisms encrusted to densely clustered shells of a monospecific organophosphatic brachiopod assemblage from the lower Cambrian (Stage 4) of South China. Brachiopods with encrusting tubes have decreased biomass (indicating reduced fitness) compared to individuals without tubes. The encrusting tubes orient tightly in vectors matching the laminar feeding currents of the host, suggesting kleptoparasitism. With no convincing parasite-host interactions known from the Ediacaran, this widespread sessile association reveals intimate parasite-host animal systems arose in early Cambrian benthic communities and their emergence may have played a key role in driving the evolutionary and ecological innovations associated with the Cambrian radiation.
Asunto(s)
Fósiles/parasitología , Interacciones Huésped-Parásitos , Invertebrados/parasitología , Animales , Teorema de Bayes , Evolución Biológica , Biomasa , Fósiles/anatomía & histología , Historia Antigua , Invertebrados/anatomía & histología , Paleontología , SimbiosisRESUMEN
Early Cambrian tommotiids are problematic fossil metazoans with external organophosphatic sclerites that have been considered to be basal members of the lophophorate stem group. Tommotiids are almost exclusively known from isolated or rarely fused individual sclerites, which made previous reconstructions of the actual organism highly conjectural. However, the recent discovery of the first articulated specimens of the tommotiid Eccentrotheca revealed a tubular sclerite arrangement (scleritome) that limited the possible life habit to sessile filter feeding and thus further supported a lophophorate affinity. Here, we report the first articulated specimens of a second tommotiid taxon, Paterimitra from the Early Cambrian of the Arrowie Basin, South Australia. Articulated specimens of Paterimitra are composed of two bilaterally symmetrical sclerite types and an unresolved number of small, asymmetrical and irregular crescent-shaped sclerites that attached to the anterior margin of the symmetrical sclerites. Together, the sclerites form an open cone in which the symmetrical sclerites are joined together and form a small posterior opening near the base of the scleritome, while the irregular crescent-shaped sclerites defined a broad anterior opening. The coniform scleritome of Paterimitra is interpreted to have attached to hard substrates via a pedicle that emerged through the small posterior opening (sometimes forming a tube) and was probably a sessile filter feeder. The scleritome of Paterimitra can be derived from the tubular scleritome of Eccentrotheca by modification of basal sclerites and reduction in tube height, and probably represents a more derived member of the brachiopod stem group with the paired symmetrical sclerites possibly homologous to brachiopod valves.
Asunto(s)
Fósiles , Invertebrados/clasificación , Animales , Invertebrados/anatomía & histología , Invertebrados/ultraestructura , Filogenia , Australia del SurRESUMEN
A new assemblage containing twenty-two species of trilobites and agnostids is described from the Goyder Formation (Cambrian Series 3) in the Ross River Syncline and Gardiner Ranges of the Amadeus Basin, Northern Territory, central Australia. New trilobite taxa described include the genus, Trephina gen. nov., and four new species Adelogonus prichardi sp. nov., Hebeia stewarti sp. nov., Liostracina joyceae sp. nov., and Trephina ranfordi sp. nov. Two agnostid taxa previously known only from Antarctica, Ammagnostus antarcticus Bentley, Jago Cooper, 2009 and Hadragnostus helixensis Jago Cooper, 2005, are also documented. Of the two agnostid species, the latter is the most age diagnostic, previously reported from the Cambrian Series 3 (Guzhangian; late Mindyallan; Glyptagnostus stolidotus Zone) Spurs Formation in Northern Victoria Land. This age for the Goyder Formation assemblage is supported by the co-occurrence of the trilobites Biaverta reineri Öpik, 1967, Blackwelderia repanda Öpik, 1967, Henadoparia integra Öpik, 1967, Monkaspis cf. travesi (Öpik, 1967), Nomadinis pristinus Öpik, 1967, Paraacidaspis? priscilla (Öpik, 1967), and Polycyrtaspis cf. flexuosa Öpik, 1967, also known from the late Mindyallan (G. stolidotus Zone) successions of the neighbouring Georgina Basin (Northern Territory and Queensland). The generic assemblage of the Goyder Formation is also similar to those from the Guzhangian (Mindyallan) of other parts of Australia (New South Wales, South Australia, and Western Australia), in addition to East Antarctica and North and South China.
Asunto(s)
Fósiles , Animales , Regiones Antárticas , Australia , China , Nueva Gales del Sur , Northern Territory , Queensland , Australia del Sur , Victoria , Australia OccidentalRESUMEN
The Lophotrochozoa includes disparate tentacle-bearing sessile protostome animals, which apparently appeared in the Cambrian explosion, but lack an uncontested fossil record. Here we describe abundant well preserved material of Cotyledion tylodes Luo et Hu, 1999, from the Cambrian (Series 2) Chengjiang deposits, reinterpreted here as a stem-group entoproct. The entoproct affinity is supported by the sessile body plan and interior soft anatomy. The body consists of an upper calyx and a lower elongate stalk with a distal holdfast. The soft anatomy includes a U-shaped gut with a mouth and aboral anus ringed by retractable marginal tentacles. Cotyledion differs from extant entoprocts in being larger, and having the calyx and the stalk covered by numerous loosely-spaced external sclerites. The description of entoprocts from the Chengjiang biota traces the ancestry of yet another lophotrochozoan phylum back to the Cambrian radiation, and has important implications for the earliest evolution of lophotrochozoans.
Asunto(s)
Evolución Biológica , Fósiles , Invertebrados/anatomía & histología , Animales , Invertebrados/clasificación , Invertebrados/ultraestructura , Microscopía Electrónica de Rastreo , Factores de TiempoRESUMEN
The tannuolinid Micrina belongs to the tommotiids-a common and widely distributed, but poorly understood, group of Early Cambrian fossil metazoans with multiple external organophosphatic sclerites. Recent findings of sessile articulated tommotiid scleritomes indicate that previous reconstructions of tommotiids as slug-like bilaterians with a dorsal cover of sclerites require detailed re-evaluation. Comparative ultrastructural work has already indicated that the tommotiids might be a sister group to the Brachiopoda, with Micrina representing the most derived and brachiopod-like bimembrate tommotiid. Here we further develop and strengthen this controversial phylogenetic model with a new reconstruction of Micrina, where the two types of sclerites--mitral and sellate--belong to a near bilaterally symmetrical bivalved sessile organism. This new scleritome configuration was tested by recreating an articulated bivalved Micrina from isolated mitral and sellate sclerites; both sclerites have muscles that would have enabled movement of the sclerites. The mitral and sellate sclerites of Micrina are considered to be homologous with the ventral and dorsal valves, respectively, of organophosphatic linguliform brachiopods, indicating that a simple type of filter-feeding within an enclosed bivalved shell had started to evolve in derived tannuolinids. The new reconstruction also indicates that the phylogenetic range of 'bivalved', sessile lophophorates is larger than previously suspected.
Asunto(s)
Fósiles , Invertebrados/anatomía & histología , Animales , Invertebrados/fisiologíaRESUMEN
Predation is arguably one of the main driving forces of early metazoan evolution, yet the fossil record of predation during the Ediacaran-Early Cambrian transition is relatively poor. Here, we present direct evidence of failed durophagous (shell-breaking) predation and subsequent shell repair in the Early Cambrian (Botoman) epibenthic mollusc Marocella from the Mernmerna Formation and Oraparinna Shale in the Flinders Ranges, South Australia. This record pushes back the first appearance of durophagy on molluscs by approximately 40Myr.