RESUMEN
To catalyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, including development of novel interventive and preventive strategies, the progression of disease was characterized in a robust coronavirus disease 2019 (COVID-19) animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14, and 28 days after inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2-inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 after inoculation, corresponding with widespread necrosis and inflammation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 after inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.
Asunto(s)
COVID-19/patología , Animales , COVID-19/virología , Cricetinae , Modelos Animales de Enfermedad , Femenino , Pulmón/patología , Masculino , Mesocricetus , SARS-CoV-2RESUMEN
In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/terapia , VIH-1/inmunología , Replicación Viral/inmunología , Adulto , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Transfusión de Sangre Autóloga/métodos , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Terapia Combinada/métodos , Femenino , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/aislamiento & purificación , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/sangre , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina G/uso terapéutico , Leucaféresis , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Latencia del Virus/efectos de los fármacos , Latencia del Virus/inmunología , Replicación Viral/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
OBJECTIVE: Simian immunodeficiency virus (SIV) infection of macaques recapitulates many aspects of HIV pathogenesis and is similarly affected by both genetic and environmental factors. Psychosocial stress is associated with immune system dysregulation and worse clinical outcomes in people with HIV. This study assessed the impact of single housing, as a model of psychosocial stress, on innate immune responses of pigtailed macaques ( Macaca nemestrina ) during acute SIV infection. METHODS: A retrospective analysis of acute SIV infection of 2- to si6-year-old male pigtailed macaques was performed to compare the innate immune responses of socially ( n = 41) and singly ( n = 35) housed animals. Measures included absolute monocyte count and subsets, and in a subset ( n ≤ 18) platelet counts and activation data. RESULTS: SIV infection resulted in the expected innate immune parameter changes with a modulating effect from housing condition. Monocyte number increased after infection for both groups, driven by classical monocytes (CD14 + CD16 - ), with a greater increase in socially housed animals (227%, p < .001, by day 14 compared with preinoculation time points). Platelet numbers recovered more quickly in the socially housed animals. Platelet activation (P-selectin) increased by 65% ( p = .004) and major histocompatibility complex class I surface expression by 40% ( p = .009) from preinoculation only in socially housed animals, whereas no change in these measures occurred in singly housed animals. CONCLUSIONS: Chronic psychosocial stress produced by single housing may play an immunomodulatory role in the innate immune response to acute retroviral infection. Dysregulated innate immunity could be one of the pathways by which psychosocial stress contributes to immune suppression and increased disease severity in people with HIV.
Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Vivienda , Inmunidad Innata , Macaca nemestrina , Masculino , Selectina-P/farmacología , Estudios Retrospectivos , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/genética , Estrés PsicológicoRESUMEN
BACKGROUND: Plasmodium knowlesi is now the major cause of human malaria in Malaysia, complicating malaria control efforts that must attend to the elimination of multiple Plasmodium species. Recent advances in the cultivation of P. knowlesi erythrocytic-stage parasites in vitro, transformation with exogenous DNA, and infection of mosquitoes with gametocytes from culture have opened up studies of this pathogen without the need for resource-intensive and costly non-human primate (NHP) models. For further understanding and development of methods for parasite transformation in malaria research, this study examined the activity of various trans-species transcriptional control sequences and the influence of Plasmodium vivax centromeric (pvcen) repeats in plasmid-transfected P. knowlesi parasites. METHODS: In vitro cultivated P. knowlesi parasites were transfected with plasmid constructs that incorporated Plasmodium vivax or Plasmodium falciparum 5' UTRs driving the expression of bioluminescence markers (firefly luciferase or Nanoluc). Promoter activities were assessed by bioluminescence, and parasites transformed with human resistant allele dihydrofolate reductase-expressing plasmids were selected using antifolates. The stability of transformants carrying pvcen-stabilized episomes was assessed by bioluminescence over a complete parasite life cycle through a rhesus macaque monkey, mosquitoes, and a second rhesus monkey. RESULTS: Luciferase expression assessments show that certain P. vivax promoter regions, not functional in the more evolutionarily-distant P. falciparum, can drive transgene expression in P. knowlesi. Further, pvcen repeats may improve the stability of episomal plasmids in P. knowlesi and support detection of NanoLuc-expressing elements over the full parasite life cycle from rhesus macaque monkeys to Anopheles dirus mosquitoes and back again to monkeys. In assays of drug responses to chloroquine, G418 and WR9910, anti-malarial half-inhibitory concentration (IC50) values of blood stages measured by NanoLuc activity proved comparable to IC50 values measured by the standard SYBR Green method. CONCLUSION: All three P. vivax promoters tested in this study functioned in P. knowlesi, whereas two of the three were inactive in P. falciparum. NanoLuc-expressing, centromere-stabilized plasmids may support high-throughput screenings of P. knowlesi for new anti-malarial agents, including compounds that can block the development of mosquito- and/or liver-stage parasites.
Asunto(s)
Plásmidos/fisiología , Plasmodium knowlesi/genética , Plasmodium vivax/genética , Regiones Promotoras Genéticas , Centrómero/metabolismo , Luciferasas/análisis , Microorganismos Modificados Genéticamente/genética , Plásmidos/genéticaRESUMEN
Platelet decline is a feature of many acute viral infections, including cytomegalovirus (CMV) infection in humans and mice. Platelet sequestration in association with other cells, including endothelium and circulating leukocytes, can contribute to this decline and influence the immune response to and pathogenesis of viral infection. We sought to determine if platelet-endothelial associations (PEAs) contribute to platelet decline during acute murine CMV (mCMV) infection, and if these associations affect viral load and production. Male BALB/c mice were infected with mCMV (Smith strain), euthanized at timepoints throughout acute infection and compared to uninfected controls. An increase in PEA formation was confirmed in the salivary gland at all post-inoculation timepoints using immunohistochemistry for CD41+ platelets co-localizing with CD34+ vessels. Platelet depletion did not change amount of viral DNA or timecourse of infection, as measured by qPCR. However, platelet depletion reduced viral titer of mCMV in the salivary glands while undepleted controls demonstrated robust replication in the tissue by plaque assay. Thus, platelet associations with endothelium may enhance the ability of mCMV to replicate within the salivary gland. Further work is needed to determine the mechanisms behind this effect and if pharmacologic inhibition of PEAs may reduce CMV production in acutely infected patients.
Asunto(s)
Plaquetas/metabolismo , Citomegalovirus/patogenicidad , Células Endoteliales/metabolismo , Glándulas Salivales/virología , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones Endogámicos BALB CRESUMEN
Intermittent mildly stressful situations provide opportunities to learn, practice, and improve coping with gains in subsequent emotion regulation. Here we investigate the effects of learning to cope with stress on anterior cingulate cortex gene expression in monkeys and mice. Anterior cingulate cortex is involved in learning, memory, cognitive control, and emotion regulation. Monkeys and mice were randomized to either stress coping or no-stress treatment conditions. Profiles of gene expression were acquired with HumanHT-12v4.0 Expression BeadChip arrays adapted for monkeys. Three genes identified in monkeys by arrays were then assessed in mice by quantitative real-time polymerase chain reaction. Expression of a key gene (PEMT) involved in acetylcholine biosynthesis was increased in monkeys by coping but this result was not verified in mice. Another gene (SPRY2) that encodes a negative regulator of neurotrophic factor signaling was decreased in monkeys by coping but this result was only partly verified in mice. The CACNG2 gene that encodes stargazin (also called TARP gamma-2) was increased by coping in monkeys as well as mice randomized to coping with or without subsequent behavioral tests of emotionality. As evidence of coping effects distinct from repeated stress exposures per se, increased stargazin expression induced by coping correlated with diminished emotionality in mice. Stargazin modulates glutamate receptor signaling and plays a role in synaptic plasticity. Molecular mechanisms of synaptic plasticity that mediate learning and memory in the context of coping with stress may provide novel targets for new treatments of disorders in human mental health.
Asunto(s)
Adaptación Psicológica/fisiología , Canales de Calcio/metabolismo , Expresión Génica/fisiología , Giro del Cíngulo/metabolismo , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Estrés Psicológico/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , SaimiriRESUMEN
Swine are widely used models in biomedical research due to their physiologic and anatomic similarities to humans. During transport from vendors to research facilities, pigs are subject to a number of stressors, including environmental, social, and stress as a result of deprivation from food and water. As stress can have a number of adverse psychologic and physiologic effects, an acclimation period, defined as the period of time that an animal has to adjust and stabilize in a new environment, is recommended. The literature indicates that swine should be conditioned to their new facility for 5 to 7 d prior to undergoing survival surgery; however, to date, there is no published scientific evidence to support this or any specific acclimation period for swine. To investigate whether a certain length acclimation period leads to decreased stress in swine, we measured 2 stress biomarkers, cortisol and chromogranin A (CgA), from the saliva of 12 naive Yorkshire swine (n = 6 males and 6 females) arriving at our facility for use in research protocols. Noninvasive saliva collection was performed on days 1, 3, 5, 7, 10, and 14 after arrival from the vendor (representing different acclimation periods). We hypothesized that longer acclimation periods would result in reduced levels of both cortisol and CgA, indicating reduced stress. Our data revealed that there was no statistical difference in cortisol levels over time (P = 0.8200), nor between the sexes (P = 0.9886) or individual animals (P = 0.6280). CgA, similarly to cortisol, showed no overall effect of time (P = 0.2017) or sex (P = 0.6598). For this analyte, individual animal was significant (P < 0.0001), which suggests high interanimal variation. Furthermore, there was a significant decrease (P = 0.0077) in salivary CgA from day 1 compared with day 14, suggesting that swine may benefit from an acclimation period of at least 14 d.
RESUMEN
Measles is a systemic disease initiated in the respiratory tract with widespread measles virus (MeV) infection of lymphoid tissue. Mortality can be substantial, but no licensed antiviral therapy is available. We evaluated both post-exposure prophylaxis and treatment with remdesivir, a broad-spectrum antiviral, using a well-characterized rhesus macaque model of measles. Animals were treated with intravenous remdesivir for 12 days beginning either 3 days after intratracheal infection (post-exposure prophylaxis, PEP) or 11 days after infection at the onset of disease (late treatment, LT). As PEP, remdesivir lowered levels of viral RNA in peripheral blood mononuclear cells, but RNA rebounded at the end of the treatment period and infectious virus was continuously recoverable. MeV RNA was cleared more rapidly from lymphoid tissue, was variably detected in the respiratory tract, and not detected in urine. PEP did not improve clinical disease nor lymphopenia and reduced the antibody response to infection. In contrast, LT had little effect on levels of viral RNA or the antibody response but also did not decrease clinical disease. Therefore, remdesivir transiently suppressed expression of viral RNA and limited dissemination when provided as PEP, but virus was not cleared and resumed replication without improvement in the clinical disease parameters evaluated.
Asunto(s)
Leucocitos Mononucleares , Sarampión , Animales , Macaca mulatta/genética , Profilaxis Posexposición , Sarampión/tratamiento farmacológico , Sarampión/prevención & control , Virus del Sarampión/genética , ARN ViralRESUMEN
The significant advances made by the global scientific community during the COVID-19 pandemic, exemplified by the development of multiple SARS-CoV-2 vaccines in less than 1 y, were made possible in part because of animal research. Historically, animals have been used to study the characterization, treatment, and prevention of most of the major infectious disease outbreaks that humans have faced. From the advent of modern 'germ theory' prior to the 1918 Spanish Flu pandemic through the more recent Ebola and Zika virus outbreaks, research that uses animals has revealed or supported key discoveries in disease pathogenesis and therapy development, helping to save lives during crises. Here we summarize the role of animal research in past pandemic and epidemic response efforts, as well as current and future considerations for animal research in the context of infectious disease research.
Asunto(s)
Experimentación Animal , COVID-19 , Influenza Pandémica, 1918-1919 , Infección por el Virus Zika , Virus Zika , Animales , Vacunas contra la COVID-19 , Historia del Siglo XX , Humanos , Pandemias/prevención & control , SARS-CoV-2RESUMEN
In the ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males compared with females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8-10 weeks of age) were inoculated intranasally with 10 5 TCID 50 of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developing more extensive pneumonia as noted on chest computed tomography, and recovering more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including IFNb and TNFa, were comparable between the sexes. However, during the recovery phase of infection, females mounted two-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole inactivated SARS-CoV-2 and mutant S-RBDs, as well as virus neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2 associated sex differences seen in the human population.
RESUMEN
In the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males than in females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8 to 10 weeks of age) were inoculated intranasally with 105 50% tissue culture infective dose (TCID50) of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developed more extensive pneumonia as noted on chest computed tomography, and recovered more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including interferon-ß (IFN-ß) and tumor necrosis factor-α (TNF-α), were comparable between the sexes. However, during the recovery phase of infection, females mounted 2-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole-inactivated SARS-CoV-2 and mutant S-RBDs as well as virus-neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2-associated sex differences seen in the human population. IMPORTANCE Men experience more severe outcomes from coronavirus disease 2019 (COVID-19) than women. Golden Syrian hamsters were used to explore sex differences in the pathogenesis of a human isolate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After inoculation, male hamsters experienced greater sickness, developed more severe lung pathology, and recovered more slowly than females. Sex differences in disease could not be reversed by estradiol treatment in males and were not explained by either virus replication kinetics or the concentrations of inflammatory cytokines in the lungs. During the recovery period, antiviral antibody responses in the respiratory tract and plasma, including to newly emerging SARS-CoV-2 variants, were greater in female than in male hamsters. Greater lung pathology during the acute phase combined with lower antiviral antibody responses during the recovery phase of infection in males than in females illustrate the utility of golden Syrian hamsters as a model to explore sex differences in the pathogenesis of SARS-CoV-2 and vaccine-induced immunity and protection.