Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 15(3): 201-206, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29334379

RESUMEN

Sequencing the RNA in a biological sample can unlock a wealth of information, including the identity of bacteria and viruses, the nuances of alternative splicing or the transcriptional state of organisms. However, current methods have limitations due to short read lengths and reverse transcription or amplification biases. Here we demonstrate nanopore direct RNA-seq, a highly parallel, real-time, single-molecule method that circumvents reverse transcription or amplification steps. This method yields full-length, strand-specific RNA sequences and enables the direct detection of nucleotide analogs in RNA.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanoporos , ARN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ARN/métodos
2.
Am J Hum Genet ; 84(2): 279-85, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19200526

RESUMEN

Synesthesia, a neurological condition affecting between 0.05%-1% of the population, is characterized by anomalous sensory perception and associated alterations in cognitive function due to interference from synesthetic percepts. A stimulus in one sensory modality triggers an automatic, consistent response in either another modality or a different aspect of the same modality. Familiality studies show evidence of a strong genetic predisposition; whereas initial pedigree analyses supported a single-gene X-linked dominant mode of inheritance with a skewed F:M ratio and a notable absence of male-to-male transmission, subsequent analyses in larger samples indicated that the mode of inheritance was likely to be more complex. Here, we report the results of a whole-genome linkage scan for auditory-visual synesthesia with 410 microsatellite markers at 9.05 cM density in 43 multiplex families (n = 196) with potential candidate regions fine-mapped at 5 cM density. Using NPL and HLOD analysis, we identified four candidate regions. Significant linkage at the genome-wide level was detected to chromosome 2q24 (HLOD = 3.025, empirical genome-wide p = 0.047). Suggestive linkage was found to chromosomes 5q33, 6p12, and 12p12. No support was found for linkage to the X chromosome; furthermore, we have identified two confirmed cases of male-to-male transmission of synesthesia. Our results demonstrate that auditory-visual synesthesia is likely to be an oligogenic disorder subject to multiple modes of inheritance and locus heterogeneity. This study comprises a significant step toward identifying the genetic substrates underlying synesthesia, with important implications for our understanding of the role of genes in human cognition and perception.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 2 , Cromosomas Humanos Par 5 , Cromosomas Humanos Par 6 , Genoma Humano , Estudio de Asociación del Genoma Completo , Alucinaciones/genética , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Caracteres Sexuales
3.
Sci Transl Med ; 13(608)2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433639

RESUMEN

Endometriosis is a common chronic inflammatory condition causing pelvic pain and infertility in women, with limited treatment options and 50% heritability. We leveraged genetic analyses in two species with spontaneous endometriosis, humans and the rhesus macaque, to uncover treatment targets. We sequenced DNA from 32 human families contributing to a genetic linkage signal on chromosome 7p13-15 and observed significant overrepresentation of predicted deleterious low-frequency coding variants in NPSR1, the gene encoding neuropeptide S receptor 1, in cases (predominantly stage III/IV) versus controls (P = 7.8 × 10-4). Significant linkage to the region orthologous to human 7p13-15 was replicated in a pedigree of 849 rhesus macaques (P = 0.0095). Targeted association analyses in 3194 surgically confirmed, unrelated cases and 7060 controls revealed that a common insertion/deletion variant, rs142885915, was significantly associated with stage III/IV endometriosis (P = 5.2 × 10-5; odds ratio, 1.23; 95% CI, 1.09 to 1.39). Immunohistochemistry, qRT-PCR, and flow cytometry experiments demonstrated that NPSR1 was expressed in glandular epithelium from eutopic and ectopic endometrium, and on monocytes in peritoneal fluid. The NPSR1 inhibitor SHA 68R blocked NPSR1-mediated signaling, proinflammatory TNF-α release, and monocyte chemotaxis in vitro (P < 0.01), and led to a significant reduction of inflammatory cell infiltrate and abdominal pain (P < 0.05) in a mouse model of peritoneal inflammation as well as in a mouse model of endometriosis. We conclude that the NPSR1/NPS system is a genetically validated, nonhormonal target for the treatment of endometriosis with likely increased relevance to stage III/IV disease.


Asunto(s)
Endometriosis , Receptores Acoplados a Proteínas G/genética , Animales , Endometriosis/tratamiento farmacológico , Endometriosis/genética , Endometrio , Femenino , Humanos , Macaca mulatta , Ratones , Factor de Necrosis Tumoral alfa
4.
Genet Epidemiol ; 32(5): 445-53, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18481795

RESUMEN

The age of onset of Huntington's disease (HD) is inversely correlated with the CAG length in the HD gene. The CAG repeat length accounts for 70% of the variability in HD age of onset. However, 90% of individuals worldwide with expanded alleles possess between 40 and 50 CAG repeat lengths in their HD gene. For these people, the size of their repeat only determines 44% of the variability in their age of onset. Once the effect of the CAG repeat has been accounted for, the residual variance in age of onset is a heritable trait. Targeted candidate gene studies and a genome scan have suggested some loci as potential modifiers of the age of onset of HD. We analyzed the large Venezuelan kindreds in which the HD gene was originally identified. These kindreds offer greater analytic power than standard sib-pair designs. We developed novel pedigree-member selection procedures to maximize power. Using a 5,858-single-nucleotide-polymorphism marker panel, we performed a genomewide linkage analysis. We discovered two novel loci on chromosome 2. Chromosome 2p25 (logarithm of the odds ratio (LOD)=4.29) and 2q35 (LOD=3.39) may contain genes that modify age of onset. A third linkage peak on chromosome 6q22 (LOD=2.48) may confirm the most promising locus from a previous genome scan. Two other candidate loci are suggestive on chromosome 5 (LOD=3.31 at 5p14 and LOD=3.14 at 5q32). All these regions harbor candidate genes that are potential HD modifier genes. Finding these modifier genes can reveal accessible and promising new therapeutic pathways and targets to ameliorate and cure HD.


Asunto(s)
Ligamiento Genético , Enfermedad de Huntington/genética , Adulto , Edad de Inicio , Mapeo Cromosómico , Cromosomas Humanos Par 2 , Cromosomas Humanos Par 6 , Genoma Humano , Humanos , Persona de Mediana Edad , Linaje , Venezuela/epidemiología
5.
Clin Vaccine Immunol ; 19(3): 295-303, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22205660

RESUMEN

The rate of decay of antibody concentration following serogroup C meningococcal (MenC) polysaccharide-protein conjugate vaccination varies between individuals. This depends partly on vaccination age but may be influenced by human genetics. We studied 721 single nucleotide polymorphisms (SNPs) across 131 candidate genes in a first cohort of 905 Caucasians (11 to 21 years old; mean time after vaccination, 4.9 years) and 30 SNPs across 17 genes in a replication study using 155 children, aged 6 to 12 years (mean time after vaccination, 6.7 years), and 196 infants (1 year old; mean time after vaccination, 8 months). Individuals were classified as responders or nonresponders for total MenC IgG concentration and MenC serum bactericidal antibody (SBA) measurements. Associated genes were examined further for quantitative outcome measures. Fifty-nine SNPs in 37 genes were associated with IgG persistence (adjusted for age at measurement), and 56 SNPs in 36 genes were associated with SBA persistence (adjusted for age at measurement and vaccine used). Three SNPs each within the Toll-like receptor 3 (TLR3) (rs3775291, rs3775292, and rs5743312) and CD44 (rs11033013, rs353644, and rs996076) genes were associated with IgG (adjusted for age at measurement) or SBA (adjusted for age at measurement and vaccine used) persistence in the initial genetic study (P, 0.02 to 0.04). Single SNPs within the TLR3 (rs7657186) (P = 0.004 [unadjusted]) and CD44 (rs12419062) (P = 0.01 [unadjusted]) genes were associated with IgG persistence in the replication study. These results suggest that genetic polymorphisms in the TLR3 and CD44 genes are associated with the persistence of the immune response to MenC vaccines 1 to 6 years after vaccination.


Asunto(s)
Receptores de Hialuranos/genética , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/inmunología , Polimorfismo de Nucleótido Simple , Receptor Toll-Like 3/genética , Adolescente , Anticuerpos Antibacterianos/sangre , Actividad Bactericida de la Sangre , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Humanos , Inmunoglobulina G/sangre , Lactante , Masculino , Infecciones Meningocócicas/inmunología , Factores de Tiempo , Adulto Joven
6.
Eur J Hum Genet ; 18(9): 1013-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20442744

RESUMEN

Over the past decade, research on the genetic variants underlying susceptibility to autism and autism spectrum disorders (ASDs) has focused on linkage and candidate gene studies. This research has implicated various chromosomal loci and genes. Candidate gene studies have proven to be particularly intractable, with many studies failing to replicate previously reported associations. In this paper, we investigate previously implicated genomic regions for a role in ASD susceptibility, using four cohorts of European ancestry. Initially, a 384 SNP Illumina GoldenGate array was used to examine linkage at six previously implicated loci. We identify linkage approaching genome-wide suggestive levels on chromosome 2 (rs2885116, MLOD=1.89). Association analysis showed significant associations in MKL2 with ASD (rs756472, P=4.31 x 10(-5)) and between SND1 and strict autism (rs1881084, P=7.76 x 10(-5)) in the Finnish and Northern Dutch populations, respectively. Subsequently, we used a second 384 SNP Illumina GoldenGate array to examine the association in seven candidate genes, and evidence for association was found in RELN (rs362780, P=0.00165). Further increasing the sample size strengthened the association with RELN (rs362780, P=0.001) and produced a second significant result in GRIK2 (rs2518261, P=0.008). Our results strengthen the case for a more detailed study of the role of RELN and GRIK2 in autism susceptibility, as well as identifying two new potential candidate genes, MKL2 and SND1.


Asunto(s)
Trastorno Autístico/genética , Ligamiento Genético , Europa (Continente) , Finlandia , Predisposición Genética a la Enfermedad , Humanos , Países Bajos , Polimorfismo de Nucleótido Simple , Proteína Reelina
7.
Nat Genet ; 40(5): 560-6, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18443594

RESUMEN

The laboratory rat is one of the most extensively studied model organisms. Inbred laboratory rat strains originated from limited Rattus norvegicus founder populations, and the inherited genetic variation provides an excellent resource for the correlation of genotype to phenotype. Here, we report a survey of genetic variation based on almost 3 million newly identified SNPs. We obtained accurate and complete genotypes for a subset of 20,238 SNPs across 167 distinct inbred rat strains, two rat recombinant inbred panels and an F2 intercross. Using 81% of these SNPs, we constructed high-density genetic maps, creating a large dataset of fully characterized SNPs for disease gene mapping. Our data characterize the population structure and illustrate the degree of linkage disequilibrium. We provide a detailed SNP map and demonstrate its utility for mapping of quantitative trait loci. This community resource is openly available and augments the genetic tools for this workhorse of physiological studies.


Asunto(s)
Bases de Datos Genéticas , Haplotipos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Ratas Endogámicas/genética , Ratas/genética , Animales , Mapeo Cromosómico , Genoma , Desequilibrio de Ligamiento , Filogenia , Recombinación Genética
8.
Ann Hum Genet ; 71(Pt 3): 295-301, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17181545

RESUMEN

Age of onset for Huntington's disease (HD) varies inversely with the length of the disease-causing CAG repeat expansion in the HD gene. A simple exponential regression model yielded adjusted R-squared values of 0.728 in a large set of Venezuelan kindreds and 0.642 in a North American, European, and Australian sample (the HD MAPS cohort). We present evidence that a two-segment exponential regression curve provides a significantly better fit than the simple exponential regression. A plot of natural log-transformed age of onset against CAG repeat length reveals this segmental relationship. This two-segment exponential regression on age of onset data increases the adjusted R-squared values by 0.012 in the Venezuelan kindreds and by 0.035 in the HD MAPS cohort. Although the amount of additional variance explained by the segmental regression approach is modest, the two slopes of the two-segment regression are significantly different from each other in both the Venezuelan kindreds [F(2, 439) = 11.13, P= 2 x 10(-5)] and in the HD MAPS cohort [F(2, 688) = 38.27, P= 2 x 10(-16)]. In both populations, the influence of each CAG repeat on age of onset appears to be stronger in the adult-onset range of CAG repeats than in the juvenile-onset range.


Asunto(s)
Enfermedad de Huntington/genética , Repeticiones de Trinucleótidos , Adulto , Edad de Inicio , Australia , Niño , Estudios de Cohortes , Europa (Continente) , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Genéticos , América del Norte , Expansión de Repetición de Trinucleótido , Venezuela
9.
Proc Natl Acad Sci U S A ; 101(10): 3498-503, 2004 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-14993615

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a triplet (CAG) expansion mutation. The length of the triplet repeat is the most important factor in determining age of onset of HD, although substantial variability remains after controlling for repeat length. The Venezuelan HD kindreds encompass 18,149 individuals spanning 10 generations, 15,409 of whom are living. Of the 4,384 immortalized lymphocyte lines collected, 3,989 DNAs were genotyped for their HD alleles, representing a subset of the population at greatest genetic risk. There are 938 heterozygotes, 80 people with variably penetrant alleles, and 18 homozygotes. Analysis of the 83 kindreds that comprise the Venezuelan HD kindreds demonstrates that residual variability in age of onset has both genetic and environmental components. We created a residual age of onset phenotype from a regression analysis of the log of age of onset on repeat length. Familial correlations (correlation +/- SE) were estimated for sibling (0.40 +/- 0.09), parent-offspring (0.10 +/- 0.11), avuncular (0.07 +/- 0.11), and cousin (0.15 +/- 0.10) pairs, suggesting a familial origin for the residual variance in onset. By using a variance-components approach with all available familial relationships, the additive genetic heritability of this residual age of onset trait is 38%. A model, including shared sibling environmental effects, estimated the components of additive genetic (0.37), shared environment (0.22), and nonshared environment (0.41) variances, confirming that approximately 40% of the variance remaining in onset age is attributable to genes other than the HD gene and 60% is environmental.


Asunto(s)
Enfermedad de Huntington/etiología , Enfermedad de Huntington/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Niño , Preescolar , Ambiente , Femenino , Humanos , Enfermedad de Huntington/epidemiología , Masculino , Persona de Mediana Edad , Modelos Genéticos , Fenotipo , Expansión de Repetición de Trinucleótido , Venezuela/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA