Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(2): 267-268, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985557

RESUMEN

The endoplasmic reticulum-associated degradation (ERAD) pathway facilitates the disposal of terminally misfolded proteins in the early secretory pathway yet spares folding intermediates from being destroyed. Zhang et al. report on a protein complex that acts as a guardian to protect these folding intermediates from being targeted for ERAD.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Pliegue de Proteína , Animales , Retículo Endoplásmico , Proteínas , Vías Secretoras
2.
Cell ; 163(1): 17, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406363

RESUMEN

The most prevalent form of cystic fibrosis arises from an amino acid deletion in the cystic fibrosis transmembrane conductance regulator, CFTR. A recently approved treatment for individuals homozygous for this mutation combines a chemical corrector, which helps CFTR fold, and a potentiator that increases CFTR channel activity.


Asunto(s)
Aminofenoles/uso terapéutico , Aminopiridinas/uso terapéutico , Benzodioxoles/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Quinolonas/uso terapéutico , Fibrosis Quística/genética , Fibrosis Quística/historia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Combinación de Medicamentos , Eliminación de Gen , Historia del Siglo XX , Historia del Siglo XXI , Humanos
3.
Cell ; 154(3): 479-81, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23890819

RESUMEN

ER-associated degradation clears the secretory pathway of misfolded proteins and mediates the regulated degradation of some ER resident proteins. Only a minor increase in the interaction between a protein and a ubiquitin ligase is sufficient to signal substrate degradation. Zhang et al. have identified deubiquitination as a signal amplifier.


Asunto(s)
Endopeptidasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Humanos
4.
Cell ; 151(6): 1163-7, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217703

RESUMEN

All cellular proteins are subject to quality control "decisions," which help to prevent or delay a myriad of diseases. Quality control within the secretory pathway creates a special challenge, as aberrant polypeptides are recognized and returned to the cytoplasm for proteasomal degradation. This process is termed endoplasmic-reticulum (ER)-associated degradation (ERAD).


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/fisiología , Proteínas/metabolismo , Vías Secretoras , Animales , Humanos , Pliegue de Proteína , Transporte de Proteínas
5.
Crit Rev Biochem Mol Biol ; : 1-45, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946646

RESUMEN

The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.

6.
Mol Cell ; 70(2): 242-253.e6, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677492

RESUMEN

Misfolded proteins in the endoplasmic reticulum (ER) are destroyed by ER-associated degradation (ERAD). Although the retrotranslocation of misfolded proteins from the ER has been reconstituted, how a polypeptide is initially selected for ERAD remains poorly defined. To address this question while controlling for the diverse nature of ERAD substrates, we constructed a series of truncations in a single ER-tethered domain. We observed that the truncated proteins exhibited variable degradation rates and discovered a positive correlation between ERAD substrate instability and detergent insolubility, which demonstrates that aggregation-prone species can be selected for ERAD. Further, Hsp104 facilitated degradation of an insoluble species, consistent with the chaperone's disaggregase activity. We also show that retrotranslocation of the ubiquitinated substrate from the ER was inhibited in the absence of Hsp104. Therefore, chaperone-mediated selection frees the ER membrane of potentially toxic, aggregation-prone species.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/enzimología , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Choque Térmico/genética , Agregado de Proteínas , Agregación Patológica de Proteínas , Pliegue de Proteína , Transporte de Proteínas , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad , Especificidad por Sustrato , Ubiquitinación
7.
PLoS Genet ; 19(11): e1011051, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956218

RESUMEN

Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal, and there is currently no cure. Bartter syndrome type II specifically arises from mutations in KCNJ1, which encodes the renal outer medullary potassium channel, ROMK. Over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified, yet their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined genomic data in both the NIH TOPMed and ClinVar databases with the aid of Rhapsody, a verified computational algorithm that predicts mutation pathogenicity and disease severity. Subsequent phenotypic studies using a yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced cell surface expression. Another mutation (T300R) was ERAD-resistant, but defects in channel activity were apparent based on two-electrode voltage clamp measurements in X. laevis oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies to advance precision medicine.


Asunto(s)
Síndrome de Bartter , Biología Computacional , Humanos , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Mutación , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Saccharomyces cerevisiae/metabolismo , Biología Computacional/métodos , Bases de Datos Genéticas
8.
Trends Biochem Sci ; 46(8): 630-639, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33509650

RESUMEN

Lysosomal degradation of endoplasmic reticulum (ER) fragments by autophagy, termed ER-phagy or reticulophagy, occurs under normal as well as stress conditions. The recent discovery of multiple ER-phagy receptors has stimulated studies on the roles of ER-phagy. We discuss how the ER-phagy receptors and the cellular components that work with these receptors mediate two important functions: ER homeostasis and ER quality control. We highlight that ER-phagy plays an important role in alleviating ER expansion induced by ER stress, and acts as an alternative disposal pathway for misfolded proteins. We suggest that the latter function explains the emerging connection between ER-phagy and disease. Additional ER-phagy-associated functions and important unanswered questions are also discussed.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Autofagia , Estrés del Retículo Endoplásmico , Homeostasis
9.
Biochem J ; 480(18): 1459-1473, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37702403

RESUMEN

Transmembrane proteins have unique requirements to fold and integrate into the endoplasmic reticulum (ER) membrane. Most notably, transmembrane proteins must fold in three separate environments: extracellular domains fold in the oxidizing environment of the ER lumen, transmembrane domains (TMDs) fold within the lipid bilayer, and cytosolic domains fold in the reducing environment of the cytosol. Moreover, each region is acted upon by a unique set of chaperones and monitored by components of the ER associated quality control machinery that identify misfolded domains in each compartment. One factor is the ER lumenal Hsp70-like chaperone, Lhs1. Our previous work established that Lhs1 is required for the degradation of the unassembled α-subunit of the epithelial sodium channel (αENaC), but not the homologous ß- and γENaC subunits. However, assembly of the ENaC heterotrimer blocked the Lhs1-dependent ER associated degradation (ERAD) of the α-subunit, yet the characteristics that dictate the specificity of Lhs1-dependent ERAD substrates remained unclear. We now report that Lhs1-dependent substrates share a unique set of features. First, all Lhs1 substrates appear to be unglycosylated, and second they contain two TMDs. Each substrate also contains orphaned or unassembled TMDs. Additionally, interfering with inter-subunit assembly of the ENaC trimer results in Lhs1-dependent degradation of the entire complex. Finally, our work suggests that Lhs1 is required for a subset of ERAD substrates that also require the Hrd1 ubiquitin ligase. Together, these data provide hints as to the identities of as-yet unconfirmed substrates of Lhs1 and potentially of the Lhs1 homolog in mammals, GRP170.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico , Animales , Citosol , Membrana Dobles de Lípidos , Proteínas de la Membrana/genética , Mamíferos
10.
Neurobiol Dis ; 184: 106196, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315905

RESUMEN

Reactive microglia are observed with aging and in Lewy body disorders, including within the olfactory bulb of men with Parkinson's disease. However, the functional impact of microglia in these disorders is still debated. Resetting these reactive cells by a brief dietary pulse of the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 may hold therapeutic potential against Lewy-related pathologies. To our knowledge, withdrawal of PLX5622 after short-term exposure has not been tested in the preformed α-synuclein fibril (PFF) model, including in aged mice of both sexes. Compared to aged female mice, we report that aged males on the control diet showed higher numbers of phosphorylated α-synuclein+ inclusions in the limbic rhinencephalon after PFFs were injected in the posterior olfactory bulb. However, aged females displayed larger inclusion sizes compared to males. Short-term (14-day) dietary exposure to PLX5622 followed by control chow reduced inclusion numbers and levels of insoluble α-synuclein in aged males-but not females-and unexpectedly raised inclusion sizes in both sexes. Transient delivery of PLX5622 also improved spatial reference memory in PFF-infused aged mice, as evidenced by an increase in novel arm entries in a Y-maze. Superior memory was positively correlated with inclusion sizes but negatively correlated with inclusion numbers. Although we caution that PLX5622 delivery must be tested further in models of α-synucleinopathy, our data suggest that larger-sized-but fewer-α-synucleinopathic structures are associated with better neurological outcomes in PFF-infused aged mice.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Sinucleinopatías , Masculino , Femenino , Ratones , Animales , alfa-Sinucleína , Sinucleinopatías/patología , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/patología
11.
Am J Physiol Cell Physiol ; 323(6): C1697-C1703, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36280391

RESUMEN

All cell types must maintain homeostasis under periods of stress. To prevent the catastrophic effects of stress, all cell types also respond to stress by inducing protective pathways. Within the cell, the endoplasmic reticulum (ER) is exquisitely stress-sensitive, primarily because this organelle folds, posttranslationally processes, and sorts one-third of the proteome. In the 1990s, a specialized ER stress response pathway was discovered, the unfolded protein response (UPR), which specifically protects the ER from damaged proteins and toxic chemicals. Not surprisingly, UPR-dependent responses are essential to maintain the function and viability of cells continuously exposed to stress, such as those in the kidney, which have high metabolic demands, produce myriad protein assemblies, continuously filter toxins, and synthesize ammonia. In this mini-review, we highlight recent articles that link ER stress and the UPR with acute kidney injury (AKI), a disease that arises in ∼10% of all hospitalized individuals and nearly half of all people admitted to intensive care units. We conclude with a discussion of prospects for treating AKI with emerging drugs that improve ER function.


Asunto(s)
Lesión Renal Aguda , Estrés del Retículo Endoplásmico , Humanos , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Lesión Renal Aguda/metabolismo , Riñón/metabolismo , Proteínas/metabolismo
12.
Am J Physiol Cell Physiol ; 322(1): C111-C121, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852210

RESUMEN

The mammalian paraoxonases (PONs) have been linked to protection against oxidative stress. However, the physiological roles of members in this family (PON1, PON2, and PON3) are still being characterized. PON2 and PON3 are expressed in the aldosterone-sensitive distal nephron of the kidney and have been shown to negatively regulate expression of the epithelial sodium channel (ENaC), a trimeric ion channel that orchestrates salt and water homeostasis. To date, the nature of this phenomenon has not been explored. Therefore, to investigate the mechanism by which PON2 regulates ENaC, we expressed PON2 along with the ENaC subunits in fisher rat thyroid (FRT) cells, a system that is amenable to biochemical analyses of ENaC assembly and trafficking. We found that PON2 primarily resides in the endoplasmic reticulum (ER) in FRT cells, and its expression reduces the abundance of each ENaC subunit, reflecting enhanced subunit turnover. In contrast, no effect on the levels of mRNAs encoding the ENaC subunits was evident. Inhibition of lysosome function with chloroquine or NH4Cl did not alter the inhibitory effect of PON2 on ENaC expression. In contrast, PON2 accelerates ENaC degradation in a proteasome-dependent manner and acts before ENaC subunit ubiquitination. As a result of enhanced ENaC subunit ubiquitination and degradation, both channel surface expression and ENaC-mediated Na+ transport in FRT cells were reduced by PON2. Together, our data suggest that PON2 functions as an ER chaperone to monitor ENaC biogenesis and redirects the channel for ER-associated degradation.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Retículo Endoplásmico/metabolismo , Canales Epiteliales de Sodio/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Arildialquilfosfatasa/análisis , Retículo Endoplásmico/química , Canales Epiteliales de Sodio/análisis , Ratones , Chaperonas Moleculares/análisis
13.
Curr Genet ; 68(2): 227-242, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35041076

RESUMEN

Misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol for ubiquitination and degradation by the proteasome. During this process, known as ER-associated degradation (ERAD), the ER-embedded Hrd1 ubiquitin ligase plays a central role in recognizing, ubiquitinating, and retrotranslocating scores of lumenal and integral membrane proteins. To better define the mechanisms underlying Hrd1 function in Saccharomyces cerevisiae, several model substrates have been developed. One substrate is Sec61-2, a temperature sensitive allele of the Sec61 translocation channel. Cells expressing Sec61-2 grow at 25 °C because the protein is stable, but sec61-2 yeast are inviable at 38 °C because the mutated protein is degraded in a Hrd1-dependent manner. Therefore, deleting HRD1 stabilizes Sec61-2 and hence sec61-2hrd1∆ double mutants are viable at 38 °C. This unique phenotype allowed us to perform a non-biased screen for loss-of-function alleles in HRD1. Based on its importance in mediating substrate retrotranslocation, the screen was also developed to focus on mutations in sequences encoding Hrd1's transmembrane-rich domain. Ultimately, a group of recessive mutations was identified in HRD1, including an ensemble of destabilizing mutations that resulted in the delivery of Hrd1 to the ERAD pathway. A more stable mutant resided in a buried transmembrane domain, yet the Hrd1 complex was disrupted in yeast expressing this mutant. Together, these data confirm the importance of Hrd1 complex integrity during ERAD, suggest that allosteric interactions between transmembrane domains regulate Hrd1 complex formation, and provide the field with new tools to define the dynamic interactions between ERAD components during substrate retrotranslocation.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Ubiquitina-Proteína Ligasas , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Selección Genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
FEMS Yeast Res ; 22(1)2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35150241

RESUMEN

Alzheimer's disease (AD) is responsible for 60%-80% of identified cases of dementia. While the generation and accumulation of amyloid precursor protein (APP) fragments is accepted as a key step in AD pathogenesis, the precise role of these fragments remains poorly understood. To overcome this deficit, we induced the expression of the soluble C-terminal fragment of APP (C99), the rate-limiting peptide for the generation of amyloid fragments, in yeast that contain thermosensitive mutations in genes encoding proteasome subunits. Our previous work with this system demonstrated that these proteasome-deficient yeast cells, expressing C99 when proteasome activity was blunted, generated amyloid fragments similar to those observed in AD patients. We now report the phenotypic repercussions of inducing C99 expression in proteasome-deficient cells. We show increased levels of protein aggregates, cellular stress and chaperone expression, electron-dense accumulations in the nuclear envelope/ER, abnormal DNA condensation, and an induction of apoptosis. Taken together, these findings suggest that the generation of C99 and its associated fragments in yeast cells with compromised proteasomal activity results in phenotypes that may be relevant to the neuropathological processes observed in AD patients. These data also suggest that this yeast model should be useful for testing therapeutics that target AD-associated amyloid, since it allows for the assessment of the reversal of the perturbed cellular physiology observed when degradation pathways are dysfunctional.


Asunto(s)
Enfermedad de Alzheimer , Complejo de la Endopetidasa Proteasomal , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Mol Cell Proteomics ; 19(11): 1896-1909, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32868373

RESUMEN

Studies in the yeast Saccharomyces cerevisiae have helped define mechanisms underlying the activity of the ubiquitin-proteasome system (UPS), uncover the proteasome assembly pathway, and link the UPS to the maintenance of cellular homeostasis. However, the spectrum of UPS substrates is incompletely defined, even though multiple techniques-including MS-have been used. Therefore, we developed a substrate trapping proteomics workflow to identify previously unknown UPS substrates. We first generated a yeast strain with an epitope tagged proteasome subunit to which a proteasome inhibitor could be applied. Parallel experiments utilized inhibitor insensitive strains or strains lacking the tagged subunit. After affinity isolation, enriched proteins were resolved, in-gel digested, and analyzed by high resolution liquid chromatography-tandem MS. A total of 149 proteasome partners were identified, including all 33 proteasome subunits. When we next compared data between inhibitor sensitive and resistant cells, 27 proteasome partners were significantly enriched. Among these proteins were known UPS substrates and proteins that escort ubiquitinated substrates to the proteasome. We also detected Erg25 as a high-confidence partner. Erg25 is a methyl oxidase that converts dimethylzymosterol to zymosterol, a precursor of the plasma membrane sterol, ergosterol. Because Erg25 is a resident of the endoplasmic reticulum (ER) and had not previously been directly characterized as a UPS substrate, we asked whether Erg25 is a target of the ER associated degradation (ERAD) pathway, which most commonly mediates proteasome-dependent destruction of aberrant proteins. As anticipated, Erg25 was ubiquitinated and associated with stalled proteasomes. Further, Erg25 degradation depended on ERAD-associated ubiquitin ligases and was regulated by sterol synthesis. These data expand the cohort of lipid biosynthetic enzymes targeted for ERAD, highlight the role of the UPS in maintaining ER function, and provide a novel tool to uncover other UPS substrates via manipulations of our engineered strain.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Oxigenasas de Función Mixta/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Cromatografía Liquida , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Ergosterol/biosíntesis , Ergosterol/metabolismo , Leupeptinas/farmacología , Oxigenasas de Función Mixta/genética , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Proteómica , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Masas en Tándem , Ubiquitinación
16.
Biochem J ; 478(24): 4203-4220, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34821356

RESUMEN

SLC26A9, a member of the solute carrier protein family, transports chloride ions across various epithelia. SLC26A9 also associates with other ion channels and transporters linked to human health, and in some cases these heterotypic interactions are essential to support the biogenesis of both proteins. Therefore, understanding how this complex membrane protein is initially folded might provide new therapeutic strategies to overcome deficits in the function of SLC26A9 partners, one of which is associated with Cystic Fibrosis. To this end, we developed a novel yeast expression system for SLC26A9. This facile system has been used extensively with other ion channels and transporters to screen for factors that oversee protein folding checkpoints. As commonly observed for other channels and transporters, we first noted that a substantial fraction of SLC26A9 is targeted for endoplasmic reticulum associated degradation (ERAD), which destroys folding-compromised proteins in the early secretory pathway. We next discovered that ERAD selection requires the Hsp70 chaperone, which can play a vital role in ERAD substrate selection. We then created SLC26A9 mutants and found that the transmembrane-rich domain of SLC26A9 was quite stable, whereas the soluble cytosolic STAS domain was responsible for Hsp70-dependent ERAD. To support data obtained in the yeast model, we were able to recapitulate Hsp70-facilitated ERAD of the STAS domain in human tissue culture cells. These results indicate that a critical barrier to nascent membrane protein folding can reside within a specific soluble domain, one that is monitored by components associated with the ERAD machinery.


Asunto(s)
Antiportadores/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico/metabolismo , Modelos Biológicos , Transportadores de Sulfato/metabolismo , Antiportadores/genética , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Humanos , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transportadores de Sulfato/genética
17.
PLoS Comput Biol ; 16(4): e1007749, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251469

RESUMEN

The renal outer medullary potassium (ROMK) channel is essential for potassium transport in the kidney, and its dysfunction is associated with a salt-wasting disorder known as Bartter syndrome. Despite its physiological significance, we lack a mechanistic understanding of the molecular defects in ROMK underlying most Bartter syndrome-associated mutations. To this end, we employed a ROMK-dependent yeast growth assay and tested single amino acid variants selected by a series of computational tools representative of different approaches to predict each variants' pathogenicity. In one approach, we used in silico saturation mutagenesis, i.e. the scanning of all possible single amino acid substitutions at all sequence positions to estimate their impact on function, and then employed a new machine learning classifier known as Rhapsody. We also used two additional tools, EVmutation and Polyphen-2, which permitted us to make consensus predictions on the pathogenicity of single amino acid variants in ROMK. Experimental tests performed for selected mutants in different classes validated the vast majority of our predictions and provided insights into variants implicated in ROMK dysfunction. On a broader scope, our analysis suggests that consolidation of data from complementary computational approaches provides an improved and facile method to predict the severity of an amino acid substitution and may help accelerate the identification of disease-causing mutations in any protein.


Asunto(s)
Canales de Potasio de Rectificación Interna/genética , Sustitución de Aminoácidos , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Biología Computacional/métodos , Humanos , Riñón/metabolismo , Riñón/patología , Mutación , Mutación Missense/genética , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Saccharomyces cerevisiae/genética
18.
Bioorg Med Chem Lett ; 46: 128167, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34089839

RESUMEN

We developed JMS-053, a potent inhibitor of the dual specificity phosphatase PTP4A3 that is potentially suitable for cancer therapy. Due to the emerging role of the unfolded protein response (UPR) in cancer pathology, we sought to identify derivatives that combine PTP4A3 inhibition with induction of endoplasmatic reticulum (ER) stress, with the goal to generate more potent anticancer agents. We have now generated bifunctional analogs that link the JMS-053 pharmacophore to an adamantyl moiety and act in concert with the phosphatase inhibitor to induce ER stress and cell death. The most potent compound in this series, 7a, demonstrated a ca. 5-fold increase in cytotoxicity in a breast cancer cell line and strong activation of UPR and ER stress response genes in spite of a ca. 13-fold decrease in PTP4A3 inhibition. These results demonstrate that the combination of phosphatase inhibition with UPR/ER-stress upregulation potentiates efficacy.


Asunto(s)
Antineoplásicos/farmacología , Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Iminas/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Piridinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Femenino , Humanos , Iminas/síntesis química , Iminas/química , Estructura Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
19.
Bioorg Med Chem Lett ; 48: 128243, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34246753

RESUMEN

A growing number of diseases are linked to the misfolding of integral membrane proteins, and many of these proteins are targeted for ubiquitin-proteasome-dependent degradation. One such substrate is a mutant form of the Cystic Fibrosis Transmembrane Conductance Regulator (F508del-CFTR). Protein folding "correctors" that repair the F508del-CFTR folding defect have entered the clinic, but they are unlikely to protect the entire protein from degradation. To increase the pool of F508del-CFTR protein that is available for correction by existing treatments, we determined a structure-activity relationship to improve the efficacy and reduce the toxicity of an inhibitor of the E1 ubiquitin activating enzyme that facilitates F508del-CFTR maturation. A resulting lead compound lacked measurable toxicity and improved the ability of an FDA-approved corrector to augment F508del-CFTR folding, transport the protein to the plasma membrane, and maintain its activity. These data support a proof-of-concept that modest inhibition of substrate ubiquitination improves the activity of small molecule correctors to treat CF and potentially other protein conformational disorders.


Asunto(s)
Benzoatos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Furanos/farmacología , Pirazoles/farmacología , Ubiquitina/antagonistas & inhibidores , Benzoatos/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Relación Dosis-Respuesta a Droga , Furanos/química , Humanos , Estructura Molecular , Pliegue de Proteína/efectos de los fármacos , Pirazoles/química , Relación Estructura-Actividad , Ubiquitina/metabolismo , Ubiquitinación/efectos de los fármacos
20.
J Cell Sci ; 131(17)2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30131440

RESUMEN

Cancer cells thrive when challenged with proteotoxic stress by inducing components of the protein folding, proteasome, autophagy and unfolded protein response (UPR) pathways. Consequently, specific molecular chaperones have been validated as targets for anti-cancer therapies. For example, inhibition of Hsp70 family proteins (hereafter Hsp70) in rhabdomyosarcoma triggers UPR induction and apoptosis. To define how these cancer cells respond to compromised proteostasis, we compared rhabdomyosarcoma cells that were sensitive (RMS13) or resistant (RMS13-R) to the Hsp70 inhibitor MAL3-101. We discovered that endoplasmic reticulum-associated degradation (ERAD) and autophagy were activated in RMS13-R cells, suggesting that resistant cells overcome Hsp70 ablation by increasing misfolded protein degradation. Indeed, RMS13-R cells degraded ERAD substrates more rapidly than RMS cells and induced the autophagy pathway. Surprisingly, inhibition of the proteasome or ERAD had no effect on RMS13-R cell survival, but silencing of select autophagy components or treatment with autophagy inhibitors restored MAL3-101 sensitivity and led to apoptosis. These data indicate a route through which cancer cells overcome a chaperone-based therapy, define how cells can adapt to Hsp70 inhibition, and demonstrate the value of combined chaperone and autophagy-based therapies.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteostasis , Rabdomiosarcoma/fisiopatología , Apoptosis , Autofagia , Línea Celular Tumoral , Degradación Asociada con el Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA