Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant J ; 115(5): 1377-1393, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243897

RESUMEN

In RNA interference (RNAi), small interfering RNAs (siRNAs) produced from double-stranded RNA guide ARGONAUTE (AGO) proteins to silence sequence-complementary RNA/DNA. RNAi can propagate locally and systemically in plants, but despite recent advances in our understanding of the underlying mechanisms, basic questions remain unaddressed. For instance, RNAi is inferred to diffuse through plasmodesmata (PDs), yet how its dynamics in planta compares with that of established symplastic diffusion markers remains unknown. Also is why select siRNA species, or size classes thereof, are apparently recovered in RNAi recipient tissues, yet only under some experimental settings. Shootward movement of endogenous RNAi in micro-grafted Arabidopsis is also yet to be achieved, while potential endogenous functions of mobile RNAi remain scarcely documented. Here, we show (i) that temporal, localized PD occlusion in source leaves' companion cells (CCs) suffices to abrogate all systemic manifestations of CC-activated mobile transgene silencing, including in sink leaves; (ii) that the presence or absence of specific AGOs in incipient/traversed/recipient tissues likely explains the apparent siRNA length selectivity observed upon vascular movement; (iii) that stress enhancement allows endo-siRNAs of a single inverted repeat (IR) locus to translocate against the shoot-to-root phloem flow; and (iv) that mobile endo-siRNAs generated from this locus have the potential to regulate hundreds of transcripts. Our results close important knowledge gaps, rationalize previously noted inconsistencies between mobile RNAi settings, and provide a framework for mobile endo-siRNA research.


Asunto(s)
Arabidopsis , ARN Bicatenario , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Bicatenario/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Interferencia de ARN , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sesgo
2.
PLoS Genet ; 17(5): e1009561, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33999950

RESUMEN

The DEFECTIVE EMBRYO AND MERISTEMS 1 (DEM1) gene encodes a protein of unknown biochemical function required for meristem formation and seedling development in tomato, but it was unclear whether DEM1's primary role was in cell division or alternatively, in defining the identity of meristematic cells. Genome sequence analysis indicates that flowering plants possess at least two DEM genes. Arabidopsis has two DEM genes, DEM1 and DEM2, which we show are expressed in developing embryos and meristems in a punctate pattern that is typical of genes involved in cell division. Homozygous dem1 dem2 double mutants were not recovered, and plants carrying a single functional DEM1 allele and no functional copies of DEM2, i.e. DEM1/dem1 dem2/dem2 plants, exhibit normal development through to the time of flowering but during male reproductive development, chromosomes fail to align on the metaphase plate at meiosis II and result in abnormal numbers of daughter cells following meiosis. Additionally, these plants show defects in both pollen and embryo sac development, and produce defective male and female gametes. In contrast, dem1/dem1 DEM2/dem2 plants showed normal levels of fertility, indicating that DEM2 plays a more important role than DEM1 in gamete viability. The increased importance of DEM2 in gamete viability correlated with higher mRNA levels of DEM2 compared to DEM1 in most tissues examined and particularly in the vegetative shoot apex, developing siliques, pollen and sperm. We also demonstrate that gamete viability depends not only on the number of functional DEM alleles inherited following meiosis, but also on the number of functional DEM alleles in the parent plant that undergoes meiosis. Furthermore, DEM1 interacts with RAS-RELATED NUCLEAR PROTEIN 1 (RAN1) in yeast two-hybrid and pull-down binding assays, and we show that fluorescent proteins fused to DEM1 and RAN1 co-localize transiently during male meiosis and pollen development. In eukaryotes, RAN is a highly conserved GTPase that plays key roles in cell cycle progression, spindle assembly during cell division, reformation of the nuclear envelope following cell division, and nucleocytoplasmic transport. Our results demonstrate that DEM proteins play an essential role in cell division in plants, most likely through an interaction with RAN1.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Genes Esenciales , Genes de Plantas/genética , Células Germinativas/metabolismo , Alelos , Proteínas de Arabidopsis/metabolismo , División Celular , Supervivencia Celular/genética , Evolución Molecular , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Células Germinativas/citología , Meiosis , Familia de Multigenes , Especificidad de Órganos , Polen/crecimiento & desarrollo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Semillas , Transgenes , Proteína de Unión al GTP ran/metabolismo
3.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35743077

RESUMEN

RNA interference (RNAi) is a powerful tool that is being increasingly utilized for crop protection against viruses, fungal pathogens, and insect pests. The non-transgenic approach of spray-induced gene silencing (SIGS), which relies on spray application of double-stranded RNA (dsRNA) to induce RNAi, has come to prominence due to its safety and environmental benefits in addition to its wide host range and high target specificity. However, along with promising results in recent studies, several factors limiting SIGS RNAi efficiency have been recognized in insects and plants. While sprayed dsRNA on the plant surface can produce a robust RNAi response in some chewing insects, plant uptake and systemic movement of dsRNA is required for delivery to many other target organisms. For example, pests such as sucking insects require the presence of dsRNA in vascular tissues, while many fungal pathogens are predominately located in internal plant tissues. Investigating the mechanisms by which sprayed dsRNA enters and moves through plant tissues and understanding the barriers that may hinder this process are essential for developing efficient ways to deliver dsRNA into plant systems. In this review, we assess current knowledge of the plant foliar and cellular uptake of dsRNA molecules. We will also identify major barriers to uptake, including leaf morphological features as well as environmental factors, and address methods to overcome these barriers.


Asunto(s)
Insectos , ARN Bicatenario , Animales , Protección de Cultivos , Silenciador del Gen , Insectos/genética , Interferencia de ARN , ARN Bicatenario/genética
4.
RNA ; 23(5): 782-797, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28232389

RESUMEN

Small RNAs play an important role in regulating gene expression through transcriptional and post-transcriptional gene silencing. Biogenesis of small RNAs from longer double-stranded (ds) RNA requires the activity of dicer-like ribonucleases (DCLs), which in plants are aided by dsRNA binding proteins (DRBs). To gain insight into this pathway in the model plant Arabidopsis, we searched for interactors of DRB4 by immunoprecipitation followed by mass spectrometry-based fingerprinting and discovered DRB7.1. This interaction, verified by reciprocal coimmunoprecipitation and bimolecular fluorescence complementation, colocalizes with markers of cytoplasmic siRNA bodies and nuclear dicing bodies. In vitro experiments using tobacco BY-2 cell lysate (BYL) revealed that the complex of DRB7.1/DRB4 impairs cleavage of diverse dsRNA substrates into 24-nucleotide (nt) small interfering (si) RNAs, an action performed by DCL3. DRB7.1 also negates the action of DRB4 in enhancing accumulation of 21-nt siRNAs produced by DCL4. Overexpression of DRB7.1 in Arabidopsis altered accumulation of siRNAs in a manner reminiscent of drb4 mutant plants, suggesting that DRB7.1 can antagonize the function of DRB4 in siRNA accumulation in vivo as well as in vitro. Specifically, enhanced accumulation of siRNAs from an endogenous inverted repeat correlated with enhanced DNA methylation, suggesting a biological impact for DRB7.1 in regulating epigenetic marks. We further demonstrate that RNase three-like (RTL) proteins RTL1 and RTL2 cleave dsRNA when expressed in BYL, and that this activity is impaired by DRB7.1/DRB4. Investigating the DRB7.1-DRB4 interaction thus revealed that a complex of DRB proteins can antagonize, rather than promote, RNase III activity and production of siRNAs in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Procesamiento Postranscripcional del ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Represoras/metabolismo , Ribonucleasa III/metabolismo
5.
EMBO J ; 29(10): 1699-712, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20414198

RESUMEN

Recent work on metazoans has uncovered the existence of an endogenous RNA-silencing pathway that functionally recapitulates the effects of experimental RNA interference (RNAi) used for gene knockdown in organisms such as Caenorhabditis elegans and Drosophila. The endogenous short interfering (si)RNA involved in this pathway are processed by Dicer-like nucleases from genomic loci re-arranged to form extended inverted repeats (IRs) that produce perfect or near-perfect dsRNA molecules. Although such IR loci are commonly detected in plant genomes, their genetics, evolution and potential contribution to plant biology through endogenous silencing have remained largely unexplored. Through an exhaustive analysis performed using Arabidopsis, we provide here evidence that at least two such endogenous IRs are genetically virtually indistinguishable from the transgene constructs commonly used for RNAi in plants. We show how these loci can be useful probes of the cellular mechanism and fluidity of RNA-silencing pathways in plants, and provide evidence that they may arise and disappear on an ecotype scale, show highly cell-specific expression patterns and respond to various stresses. IR loci thus have the potential to act as molecular sensors of the local environments found within distinct ecological plant niches. We further show that the various siRNA size classes produced by at least one of these IR loci are functionally loaded into cognate effector proteins and mediate both post-transcriptional gene silencing and RNA-directed DNA methylation (RdDM) of endogenous as well as exogenous targets. Finally, and as previously reported during plant experimental RNAi, we provide evidence that endogenous IR-derived siRNAs of all size classes are not cell-autonomous and can be transported through graft junctions over long distances, in target tissues where they are functional, at least in mediating RdDM. Collectively, these results define the existence of a bona fide, endogenous and systemic RNAi pathway in plants that may have implications in adaptation, epiallelism and trans-generational memory.


Asunto(s)
Arabidopsis/genética , Plantas/genética , Interferencia de ARN , Secuencia de Aminoácidos , Animales , Proteínas de Arabidopsis/metabolismo , Caenorhabditis elegans , Proteínas de Ciclo Celular/metabolismo , Metilación de ADN , Drosophila , Silenciador del Gen , Datos de Secuencia Molecular , Mutación , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/metabolismo , Homología de Secuencia de Aminoácido , Transcripción Genética , Transgenes
6.
Nat Cell Biol ; 25(8): 1111-1120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460695

RESUMEN

The ability to balance conflicting functional demands is critical for ensuring organismal survival. The transcription and repair of the mitochondrial genome (mtDNA) requires separate enzymatic activities that can sterically compete1, suggesting a life-long trade-off between these two processes. Here in Caenorhabditis elegans, we find that the bZIP transcription factor ATFS-1/Atf5 (refs. 2,3) regulates this balance in favour of mtDNA repair by localizing to mitochondria and interfering with the assembly of the mitochondrial pre-initiation transcription complex between HMG-5/TFAM and RPOM-1/mtRNAP. ATFS-1-mediated transcriptional inhibition decreases age-dependent mtDNA molecular damage through the DNA glycosylase NTH-1/NTH1, as well as the helicase TWNK-1/TWNK, resulting in an enhancement in the functional longevity of cells and protection against decline in animal behaviour caused by targeted and severe mtDNA damage. Together, our findings reveal that ATFS-1 acts as a molecular focal point for the control of balance between genome expression and maintenance in the mitochondria.


Asunto(s)
Proteínas de Caenorhabditis elegans , ADN Mitocondrial , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Caenorhabditis elegans/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Daño del ADN , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
7.
Stress Biol ; 2(1): 37, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37676437

RESUMEN

Global food production is at risk from many abiotic and biotic stresses and can be affected by multiple stresses simultaneously. Virus diseases damage cultivated plants and decrease the marketable quality of produce. Importantly, the progression of virus diseases is strongly affected by changing climate conditions. Among climate-changing variables, temperature increase is viewed as an important factor that affects virus epidemics, which may in turn require more efficient disease management. In this review, we discuss the effect of elevated temperature on virus epidemics at both macro- and micro-climatic levels. This includes the temperature effects on virus spread both within and between host plants. Furthermore, we focus on the involvement of molecular mechanisms associated with temperature effects on plant defence to viruses in both susceptible and resistant plants. Considering various mechanisms proposed in different pathosystems, we also offer a view of the possible opportunities provided by RNA -based technologies for virus control at elevated temperatures. Recently, the potential of these technologies for topical field applications has been strengthened through a combination of genetically modified (GM)-free delivery nanoplatforms. This approach represents a promising and important climate-resilient substitute to conventional strategies for managing plant virus diseases under global warming scenarios. In this context, we discuss the knowledge gaps in the research of temperature effects on plant-virus interactions and limitations of RNA-based emerging technologies, which should be addressed in future studies.

8.
Nat Plants ; 8(5): 535-548, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35577960

RESUMEN

Whitefly (Bemisia tabaci) is a phloem-feeding global agricultural pest belonging to the order Hemiptera. Foliar application of double-stranded RNA (dsRNA) represents an attractive avenue for pest control; however, limited uptake and phloem availability of the dsRNA has restricted the development of RNA interference (RNAi)-based biopesticides against sap-sucking insects. Following high-throughput single and combinational target gene identification for additive effects, we report here that foliar application of dsRNA loaded onto layered double hydroxide (LDH), termed BioClay, can effectively disrupt multiple whitefly developmental stages in planta. Adjuvants were shown to enhance uptake and movement of foliar-applied dsRNA to vascular bundles and into the whitefly. Notably, delivering the dsRNA as a BioClay spray instead of as naked dsRNA improved protection against immature insect stages, demonstrating the platform's potential to extend the benefits offered by RNA insecticides towards complete life cycle control of whitefly and potentially other pests.


Asunto(s)
Hemípteros , Animales , Arcilla , Hemípteros/genética , Insectos , Floema , Interferencia de ARN , ARN Bicatenario
9.
Nat Commun ; 12(1): 2194, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850152

RESUMEN

Multicellularity has coincided with the evolution of microRNAs (miRNAs), small regulatory RNAs that are integrated into cellular differentiation and homeostatic gene-regulatory networks. However, the regulatory mechanisms underpinning miRNA activity have remained largely obscured because of the precise, and thus difficult to access, cellular contexts under which they operate. To resolve these, we have generated a genome-wide map of active miRNAs in Caenorhabditis elegans by revealing cell-type-specific patterns of miRNAs loaded into Argonaute (AGO) silencing complexes. Epitope-labelled AGO proteins were selectively expressed and immunoprecipitated from three distinct tissue types and associated miRNAs sequenced. In addition to providing information on biological function, we define adaptable miRNA:AGO interactions with single-cell-type and AGO-specific resolution. We demonstrate spatial and temporal dynamicism, flexibility of miRNA loading, and suggest miRNA regulatory mechanisms via AGO selectivity in different tissues and during ageing. Additionally, we resolve widespread changes in AGO-regulated gene expression by analysing translatomes specifically in neurons.


Asunto(s)
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Sistema Nervioso , Isoformas de Proteínas
10.
STAR Protoc ; 2(1): 100320, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33659901

RESUMEN

The nature of plant tissues has continuously hampered understanding of the spatio-temporal and subcellular distribution of RNA-guided processes. Here, we describe a universal protocol based on Arabidopsis to investigate subcellular RNA distribution from virtually any plant species using flow cytometry sorting. This protocol includes all necessary control steps to assess the quality of the nuclear RNA purification. Moreover, it can be easily applied to different plant developmental stages, tissues, cell cycle phases, experimental growth conditions, and specific cell type(s). For complete information on the use and execution of this protocol, please refer to Bologna et al. (2018) and de Leone et al. (2020).


Asunto(s)
Citometría de Flujo/métodos , ARN Nuclear/aislamiento & purificación , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/fisiología , Plantas/genética , Plantas/metabolismo , ARN/aislamiento & purificación , ARN/metabolismo
11.
Aging Cell ; 20(7): e13408, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096683

RESUMEN

Changes in the rate and fidelity of mitochondrial protein synthesis impact the metabolic and physiological roles of mitochondria. Here we explored how environmental stress in the form of a high-fat diet modulates mitochondrial translation and affects lifespan in mutant mice with error-prone (Mrps12ep/ep ) or hyper-accurate (Mrps12ha/ha ) mitochondrial ribosomes. Intriguingly, although both mutations are metabolically beneficial in reducing body weight, decreasing circulating insulin and increasing glucose tolerance during a high-fat diet, they manifest divergent (either deleterious or beneficial) outcomes in a tissue-specific manner. In two distinct organs that are commonly affected by the metabolic disease, the heart and the liver, Mrps12ep/ep mice were protected against heart defects but sensitive towards lipid accumulation in the liver, activating genes involved in steroid and amino acid metabolism. In contrast, enhanced translational accuracy in Mrps12ha/ha mice protected the liver from a high-fat diet through activation of liver proliferation programs, but enhanced the development of severe hypertrophic cardiomyopathy and led to reduced lifespan. These findings reflect the complex transcriptional and cell signalling responses that differ between post-mitotic (heart) and highly proliferative (liver) tissues. We show trade-offs between the rate and fidelity of mitochondrial protein synthesis dictate tissue-specific outcomes due to commonly encountered stressful environmental conditions or aging.


Asunto(s)
Enfermedades Cardiovasculares/genética , Mitocondrias/metabolismo , Estrés Fisiológico/genética , Animales , Humanos , Longevidad , Masculino , Ratones
12.
Nat Plants ; 6(7): 789-799, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32632272

RESUMEN

In RNA interference (RNAi), the RNase III Dicer processes long double-stranded RNA (dsRNA) into short interfering RNA (siRNA), which, when loaded into ARGONAUTE (AGO) family proteins, execute gene silencing1. Remarkably, RNAi can act non-cell autonomously2,3: it is graft transmissible4-7, and plasmodesmata-associated proteins modulate its cell-to-cell spread8,9. Nonetheless, the molecular mechanisms involved remain ill defined, probably reflecting a disparity of experimental settings. Among other caveats, these almost invariably cause artificially enhanced movement via transitivity, whereby primary RNAi-target transcripts are converted into further dsRNA sources of secondary siRNA5,10,11. Whether siRNA mobility naturally requires transitivity and whether it entails the same or distinct signals for cell-to-cell versus long-distance movement remains unclear, as does the identity of the mobile signalling molecules themselves. Movement of long single-stranded RNA, dsRNA, free/AGO-bound secondary siRNA or primary siRNA have all been advocated12-15; however, an entity necessary and sufficient for all known manifestations of plant mobile RNAi remains to be ascertained. Here, we show that the same primary RNAi signal endows both vasculature-to-epidermis and long-distance silencing movement from three distinct RNAi sources. The mobile entities are AGO-free primary siRNA duplexes spreading length and sequence independently. However, their movement is accompanied by selective siRNA depletion reflecting the AGO repertoires of traversed cell types. Coupling movement with this AGO-mediated consumption process creates qualitatively distinct silencing territories, potentially enabling unlimited spatial gene regulation patterns well beyond those granted by mere gradients.


Asunto(s)
Interferencia de ARN , ARN Interferente Pequeño/genética , Arabidopsis/genética , Clonación Molecular , Inmunoprecipitación , Microscopía Fluorescente , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN
13.
Mol Plant ; 11(8): 1008-1023, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29803952

RESUMEN

In eukaryotes, the RNase-III Dicer often produces length/sequence microRNA (miRNA) variants, called "isomiRs", owing to intrinsic structural/sequence determinants of the miRNA precursors (pre-miRNAs). In this study, we combined biophysics, genetics and biochemistry approaches to study Arabidopsis miR168, the key feedback regulator of central plant silencing effector protein ARGONAUTE1 (AGO1). We identified a motif conserved among plant pre-miR168 orthologs, which enables flexible internal base-pairing underlying at least three metastable structural configurations. These configurations promote alternative, accurate Dicer cleavage events generating length and structural isomiR168 variants with distinctive AGO sorting properties and modes of action. Among these isomiR168s, a duplex with a 22-nt guide strand exhibits strikingly preferential affinity for AGO10, the closest AGO1 paralog. The 22-nt miR168-AGO10 complex antagonizes AGO1 accumulation in part via "transitive RNAi", a silencing-amplification process, to maintain appropriate AGO1 cellular homeostasis. Furthermore, we found that the tombusviral P19 silencing-suppressor protein displays markedly weaker affinity for the 22-nt form among its isomiR168 cargoes, thereby promoting AGO10-directed suppression of AGO1-mediated antiviral silencing. Taken together, these findings indicate that structural flexibility, a previously overlooked property of pre-miRNAs, considerably increases the versatility and regulatory potential of individual MIRNA genes, and that some pathogens might have evolved the capacity or mechanisms to usurp this property.


Asunto(s)
Silenciador del Gen/fisiología , MicroARNs/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Regulación de la Expresión Génica de las Plantas , ARN de Planta/genética , Tombusvirus/genética
14.
Nat Plants ; 7(10): 1328-1329, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34650260
15.
Front Plant Sci ; 2: 99, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22639621

RESUMEN

Initiation of RNA polymerase II transcription signals the beginning of a series of physically and functionally coupled pre-mRNA processing events that transform an RNA transcript into a highly structured, mature ribonucleoprotein complex. With such a complexity of co-transcriptional processes comes the need to identify and degrade improperly processed transcripts. Quality control of mRNA expression primarily involves exonucleolytic degradation of aberrant RNAs. RNA silencing, on the other hand, tends to be viewed separately as a pathway that primarily functions in regulating endogenous gene expression and in genome defense against transposons and viruses. Here, we review current knowledge of these pathways as they exist in plants and draw parallels to similar pathways in other eukaryotes. We then highlight some unexplored overlaps that exist between the RNA silencing and RNA decay pathways of plants, as evidenced by their shared RNA substrates and shared genetic requirements.

16.
Curr Opin Cell Biol ; 21(3): 416-25, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19447594

RESUMEN

Controlling protein-coding gene expression can no longer be attributed purely to proteins involved in transcription, RNA processing, and translation. The role that noncoding RNAs (ncRNAs) play as potent and specific regulators of gene expression is now widely recognized in almost all species studied to date. Long ncRNAs can both upregulate and downregulate gene expression in both eukaryotes and prokaryotes and are essential in processes such as dosage compensation, genomic imprinting, developmental patterning and differentiation, and stress response. Small ncRNAs also play essential roles in diverse organisms, although are limited to eukaryotes. Different small RNA classes regulate diverse processes such as transposon and virus suppression, as well as many key developmental processes.


Asunto(s)
Diferenciación Celular/genética , Compensación de Dosificación (Genética) , Regulación de la Expresión Génica , Impresión Genómica , ARN no Traducido/genética , Animales , Células Eucariotas/metabolismo , Humanos , ARN no Traducido/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA