Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Gastroenterol ; 18(1): 131, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30153805

RESUMEN

BACKGROUND: Alteration of the gut microbiota by repeated antibiotic treatment increases susceptibility to Clostridioides difficile infection. Faecal microbiota transplantation from donors with a normal microbiota effectively treats C. difficile infection. METHODS: The study involved 10 patients with recurrent C. difficile infection, nine of whom received transplants from individual donors and one who received a donor unit from a stool bank (OpenBiome). RESULTS: All individuals demonstrated enduring post-transplant resolution of C. difficile- associated diarrhoea. Faecal microbiota diversity of recipients significantly increased, and the composition of the microbiota resembled that of the donor. Patients with C. difficile infection exhibited significantly lower faecal levels of secondary/ bile acids and higher levels of primary bile acids. Levels of secondary bile acids were restored in all transplant recipients, but to a lower degree with the OpenBiome transplant. The abundance increased of bacterial genera known from previous studies to confer resistance to growth and germination of C. difficile. These were significantly negatively associated with primary bile acid levels and positively related with secondary bile acid levels. Although reduced levels of the short chain fatty acids, butyrate, propionate and acetate, have been previously reported, here we report elevations in SCFA, pyruvic and lactic fatty acids, saturated, ω-6, monounsaturated, ω-3 and ω-6 polyunsaturated fatty acids (PUFA) in C. difficile infection. This potentially indicates one or a combination of increased dietary FA intake, microbial modification of FAs or epithelial cell damage and inflammatory cell recruitment. No reversion to donor FA profile occurred post-FMT but ω-3 to ω-6 PUFA ratios were altered in the direction of the donor. Archaeal metabolism genes were found in some samples post FMT. CONCLUSION: A consistent metabolic signature was identified in the post-transplant microbiota, with reduced primary bile acids and substantial restoration of secondary bile acid production capacity. Total FA levels were unchanged but the ratio of inflammatory to non-inflammatory FAs decreased.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/terapia , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Adulto , Anciano , Anciano de 80 o más Años , Ácidos y Sales Biliares/metabolismo , Infecciones por Clostridium/metabolismo , Ácidos Grasos Volátiles/metabolismo , Heces/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recurrencia , Adulto Joven
2.
Neurogastroenterol Motil ; 32(1): e13726, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31576631

RESUMEN

BACKGROUND: A hallmark feature of Parkinson's disease (PD) is the build-up of α-synuclein protein aggregates throughout the brain; however α-synuclein is also expressed in enteric neurons. Gastrointestinal (GI) symptoms and pathology are frequently reported in PD, including constipation, increased intestinal permeability, glial pathology, and alterations to gut microbiota composition. α-synuclein can propagate through neuronal systems but the site of origin of α-synuclein pathology, whether it be the gut or the brain, is still unknown. Physical exercise is associated with alleviating symptoms of PD and with altering the composition of the gut microbiota. METHODS: This study investigated the effects of bilateral nigral injection of adeno-associated virus (AAV)-α-synuclein on enteric neurons, glia and neurochemistry, the gut microbiome, and bile acid metabolism in rats, some of whom were exposed to voluntary exercise. KEY RESULTS: Nigral overexpression of α-synuclein resulted in significant neuronal loss in the ileal submucosal plexus with no change in enteric glia. In contrast, the myenteric plexus showed a significant increase in glial expression, while neuronal numbers were maintained. Concomitant alterations were observed in the gut microbiome and related bile acid metabolism. Voluntary running protected against neuronal loss, increased enteric glial expression, and modified gut microbiome composition in the brain-injected AAV-α-synuclein PD model. CONCLUSIONS AND INFERENCES: These results show that developing nigral α-synuclein pathology in this PD model exerts significant alterations on the enteric nervous system (ENS) and gut microbiome that are receptive to modification by exercise. This highlights brain to gut communication as an important mechanism in PD pathology.


Asunto(s)
Sistema Nervioso Entérico/patología , Microbioma Gastrointestinal , Trastornos Parkinsonianos , Sustancia Negra/metabolismo , alfa-Sinucleína/toxicidad , Animales , Vectores Genéticos , Humanos , Inyecciones Intraventriculares , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Transfección , alfa-Sinucleína/administración & dosificación
3.
Microbiome ; 7(1): 39, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867067

RESUMEN

BACKGROUND: There are complex interactions between aging, frailty, diet, and the gut microbiota; modulation of the gut microbiota by diet could lead to healthier aging. The purpose of this study was to test the effect of diets differing in sugar, fat, and fiber content upon the gut microbiota of mice humanized with microbiota from healthy or frail older people. We also performed a 6-month dietary fiber supplementation in three human cohorts representing three distinct life-stages. METHODS: Mice were colonized with human microbiota and then underwent an 8-week dietary intervention with either a high-fiber/low-fat diet typical of elderly community dwellers or a low-fiber/high-fat diet typical of long-stay residential care subjects. A cross-over design was used where the diets were switched after 4 weeks to the other diet type to identify responsive taxa and innate immunity changes. In the human intervention, the subjects supplemented their normal diet with a mix of five prebiotics (wheat dextrin, resistant starch, polydextrose, soluble corn fiber, and galactooligo-saccharide) at 10 g/day combined total, for healthy subjects and 20 g/day for frail subjects, or placebo (10 g/day maltodextrin) for 26 weeks. The gut microbiota was profiled and immune responses were assayed by T cell markers in mice, and serum cytokines in humans. RESULTS: Humanized mice maintained gut microbiota types reflecting the respective healthy or frail human donor. Changes in abundance of specific taxa occurred with the diet switch. In mice with the community type microbiota, the observed differences reflected compositions previously associated with higher frailty. The dominance of Prevotella present initially in community inoculated mice was replaced by Bacteroides, Alistipes, and Oscillibacter. Frail type microbiota showed a differential effect on innate immune markers in both conventional and germ-free mice, but a moderate number of taxonomic changes occurring upon diet switch with an increase in abundance of Parabacteroides, Blautia, Clostridium cluster IV, and Phascolarctobacterium. In the human intervention, prebiotic supplementation did not drive any global changes in alpha- or beta-diversity, but the abundance of certain bacterial taxa, particularly Ruminococcaceae (Clostridium cluster IV), Parabacteroides, Phascolarctobacterium, increased, and levels of the chemokine CXCL11 were significantly lower in the frail elderly group, but increased during the wash-out period. CONCLUSIONS: Switching to a nutritionally poorer diet has a profound effect on the microbiota in mouse models, with changes in the gut microbiota from healthy donors reflecting previously observed differences between elderly frail and non-frail individuals. However, the frailty-associated gut microbiota did not reciprocally switch to a younger healthy-subject like state, and supplementation with prebiotics was associated with fewer detected effects in humans than diet adjustment in animal models.


Asunto(s)
Envejecimiento/inmunología , Bacterias/clasificación , Vida Libre de Gérmenes/inmunología , Inmunidad Innata/efectos de los fármacos , Microbiota/efectos de los fármacos , Prebióticos/administración & dosificación , Adulto , Anciano , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Biodiversidad , Quimiocina CXCL11/genética , Estudios Cruzados , Heces/microbiología , Femenino , Anciano Frágil , Tracto Gastrointestinal/microbiología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Modelos Animales , Prebióticos/efectos adversos , Resultado del Tratamiento , Regulación hacia Arriba , Adulto Joven
4.
Nat Biotechnol ; 35(11): 1069-1076, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28967887

RESUMEN

Technical variation in metagenomic analysis must be minimized to confidently assess the contributions of microbiota to human health. Here we tested 21 representative DNA extraction protocols on the same fecal samples and quantified differences in observed microbial community composition. We compared them with differences due to library preparation and sample storage, which we contrasted with observed biological variation within the same specimen or within an individual over time. We found that DNA extraction had the largest effect on the outcome of metagenomic analysis. To rank DNA extraction protocols, we considered resulting DNA quantity and quality, and we ascertained biases in estimates of community diversity and the ratio between Gram-positive and Gram-negative bacteria. We recommend a standardized DNA extraction method for human fecal samples, for which transferability across labs was established and which was further benchmarked using a mock community of known composition. Its adoption will improve comparability of human gut microbiome studies and facilitate meta-analyses.


Asunto(s)
Fraccionamiento Químico/métodos , ADN/química , Heces/química , Metagenómica , Bacterias/genética , Biología Computacional , Humanos , Control de Calidad , Especificidad de la Especie
5.
Microbiome ; 4(1): 19, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27160322

RESUMEN

BACKGROUND: Alterations in intestinal microbiota have been correlated with a growing number of diseases. Investigating the faecal microbiota is widely used as a non-invasive and ethically simple proxy for intestinal biopsies. There is an urgent need for collection and transport media that would allow faecal sampling at distance from the processing laboratory, obviating the need for same-day DNA extraction recommended by previous studies of freezing and processing methods for stool. We compared the faecal bacterial DNA quality and apparent phylogenetic composition derived using a commercial kit for stool storage and transport (DNA Genotek OMNIgene GUT) with that of freshly extracted samples, 22 from infants and 20 from older adults. RESULTS: Use of the storage vials increased the quality of extracted bacterial DNA by reduction of DNA shearing. When infant and elderly datasets were examined separately, no differences in microbiota composition were observed due to storage. When the two datasets were combined, there was a difference according to a Wilcoxon test in the relative proportions of Faecalibacterium, Sporobacter, Clostridium XVIII, and Clostridium XlVa after 1 week's storage compared to immediately extracted samples. After 2 weeks' storage, Bacteroides abundance was also significantly different, showing an apparent increase from week 1 to week 2. The microbiota composition of infant samples was more affected than that of elderly samples by storage, with significantly higher Spearman distances between paired freshly extracted and stored samples (p < 0.001). When the microbiota profiles were analysed at the operational taxonomic unit (OTU) level, three infant datasets in the study did not cluster together, while only one elderly dataset did not. The lower microbiota diversity of the infant gut microbiota compared to the elderly gut microbiota (p < 0.001) means that any alteration in the infant datasets has a proportionally larger effect. CONCLUSIONS: The commercial storage vials appear to be suitable for high diversity microbiota samples, but may be less appropriate for lower diversity samples. Differences between fresh and stored samples mean that where storage is unavoidable, a consistent storage regime should be used. We would recommend extraction ideally within the first week of storage.


Asunto(s)
ADN Bacteriano/genética , Microbioma Gastrointestinal/genética , Manejo de Especímenes/métodos , Adulto , Anciano , Anciano de 80 o más Años , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Clostridium/genética , Clostridium/crecimiento & desarrollo , Faecalibacterium/genética , Faecalibacterium/crecimiento & desarrollo , Heces/microbiología , Humanos , Lactante , Intestinos/microbiología , Persona de Mediana Edad , Filogenia , ARN Ribosómico 16S/genética
6.
Emerg Infect Dis ; 13(5): 747-50, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17553256

RESUMEN

We isolated Candida dubliniensis from a nonhuman source, namely, tick samples from an Irish seabird colony. The species was unambiguously identifi ed by phenotypic and genotypic means. Analysis of the 5.8S rRNA gene showed that the environmental isolates belong to C. dubliniensis genotype 1.


Asunto(s)
Candida/aislamiento & purificación , Microbiología Ambiental , Heces/microbiología , Ixodes/microbiología , Animales , Aves/microbiología , Aves/parasitología , Candida/clasificación , Candida/patogenicidad , Reservorios de Enfermedades , Genotipo , Irlanda/epidemiología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA