Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 569(7754): 53-58, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31043730

RESUMEN

Nuclear magic numbers correspond to fully occupied energy shells of protons or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. Although the sequence of magic numbers is well established for stable nuclei, experimental evidence has revealed modifications for nuclei with a large asymmetry between proton and neutron numbers. Here we provide a spectroscopic study of the doubly magic nucleus 78Ni, which contains fourteen neutrons more than the heaviest stable nickel isotope. We provide direct evidence of its doubly magic nature, which is also predicted by ab initio calculations based on chiral effective-field theory interactions and the quasi-particle random-phase approximation. Our results also indicate the breakdown of the neutron magic number 50 and proton magic number 28 beyond this stronghold, caused by a competing deformed structure. State-of-the-art phenomenological shell-model calculations reproduce this shape coexistence, predicting a rapid transition from spherical to deformed ground states, with 78Ni as the turning point.

2.
Phys Rev Lett ; 132(22): 222501, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38877923

RESUMEN

The known I^{π}=8_{1}^{+}, E_{x}=2129-keV isomer in the semimagic nucleus ^{130}Cd_{82} was populated in the projectile fission of a ^{238}U beam at the Radioactive Isotope Beam Factory at RIKEN. The high counting statistics of the accumulated data allowed us to determine the excitation energy, E_{x}=2001.2(7) keV, and half-life, T_{1/2}=57(3) ns, of the I^{π}=6_{1}^{+} state based on γγ coincidence information. Furthermore, the half-life of the 8_{1}^{+} state, T_{1/2}=224(4) ns, was remeasured with high precision. The new experimental information, combined with available data for ^{134}Sn and large-scale shell model calculations, allowed us to extract proton and neutron effective charges for ^{132}Sn, a doubly magic nucleus far-off stability. A comparison to analogous information for ^{100}Sn provides first reliable information regarding the isospin dependence of the isoscalar and isovector effective charges in heavy nuclei.

3.
Phys Rev Lett ; 129(26): 262501, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36608181

RESUMEN

The one-neutron knockout from ^{52}Ca in inverse kinematics onto a proton target was performed at ∼230 MeV/nucleon combined with prompt γ spectroscopy. Exclusive quasifree scattering cross sections to bound states in ^{51}Ca and the momentum distributions corresponding to the removal of 1f_{7/2} and 2p_{3/2} neutrons were measured. The cross sections, interpreted within the distorted-wave impulse approximation reaction framework, are consistent with a shell closure at the neutron number N=32, found as strong as at N=28 and N=34 in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron 1f_{7/2} and 2p_{3/2} orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the 2p_{3/2} orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.

4.
Phys Rev Lett ; 126(25): 252501, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34241497

RESUMEN

Direct proton-knockout reactions of ^{55}Sc at ∼220 MeV/nucleon were studied at the RIKEN Radioactive Isotope Beam Factory. Populated states of ^{54}Ca were investigated through γ-ray and invariant-mass spectroscopy. Level energies were calculated from the nuclear shell model employing a phenomenological internucleon interaction. Theoretical cross sections to states were calculated from distorted-wave impulse approximation estimates multiplied by the shell model spectroscopic factors, which describe the wave function overlap of the ^{55}Sc ground state with states in ^{54}Ca. Despite the calculations showing a significant amplitude of excited neutron configurations in the ground-state of ^{55}Sc, valence proton removals populated predominantly the ground state of ^{54}Ca. This counterintuitive result is attributed to pairing effects leading to a dominance of the ground-state spectroscopic factor. Owing to the ubiquity of the pairing interaction, this argument should be generally applicable to direct knockout reactions from odd-even to even-even nuclei.

5.
Phys Rev Lett ; 125(1): 012501, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678621

RESUMEN

Twenty-one two-proton knockout (p,3p) cross sections were measured from neutron-rich nuclei at ∼250 MeV/nucleon in inverse kinematics. The angular distribution of the three emitted protons was determined for the first time, demonstrating that the (p,3p) kinematics are consistent with two sequential proton-proton collisions within the projectile nucleus. Ratios of (p,3p) over (p,2p) inclusive cross sections follow the trend of other many-nucleon removal reactions, further reinforcing the sequential nature of (p,3p) in neutron-rich nuclei.

6.
Phys Rev Lett ; 124(22): 222504, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32567915

RESUMEN

We report the measurement of reaction cross sections (σ_{R}^{ex}) of ^{27,29}F with a carbon target at RIKEN. The unexpectedly large σ_{R}^{ex} and derived matter radius identify ^{29}F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the 2p_{3/2} orbital, thereby vanishing the shell closure associated with the neutron number N=20. The results are explained by state-of-the-art shell model calculations. Coupled-cluster computations based on effective field theories of the strong nuclear force describe the matter radius of ^{27}F but are challenged for ^{29}F.

7.
Phys Rev Lett ; 124(22): 222501, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32567911

RESUMEN

Here we present new information on the shape evolution of the very neutron-rich ^{92,94}Se nuclei from an isomer-decay spectroscopy experiment at the Radioactive Isotope Beam Factory at RIKEN. High-resolution germanium detectors were used to identify delayed γ rays emitted following the decay of their isomers. New transitions are reported extending the previously known level schemes. The isomeric levels are interpreted as originating from high-K quasineutron states with an oblate deformation of ß∼0.25, with the high-K state in ^{94}Se being metastable and K hindered. Following this, ^{94}Se is the lowest-mass neutron-rich nucleus known to date with such a substantial K hindrance. Furthermore, it is the first observation of an oblate K isomer in a deformed nucleus. This opens up the possibility for a new region of K isomers at low Z and at oblate deformation, involving the same neutron orbitals as the prolate orbitals within the classic Z∼72 deformed hafnium region. From an interpretation of the level scheme guided by theoretical calculations, an oblate deformation is also suggested for the ^{94}Se_{60} ground-state band.

8.
Phys Rev Lett ; 122(5): 052501, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30822018

RESUMEN

One of the most exotic light neutron-rich nuclei currently accessible for experimental study is ^{40}Mg, which lies at the intersection of the nucleon magic number N=28 and the neutron drip line. Low-lying excited states of ^{40}Mg have been studied for the first time following a one-proton removal reaction from ^{41}Al, performed at the Radioactive Isotope Beam Factory of RIKEN Nishina Center with the DALI2 γ-ray array and the ZeroDegree spectrometer. Two γ-ray transitions were observed, suggesting an excitation spectrum that shows unexpected properties as compared to both the systematics along the Z=12, N≥20 Mg isotopes and available state-of-the-art theoretical model predictions. A possible explanation for the observed structure involves weak-binding effects in the low-lying excitation spectrum.

9.
Phys Rev Lett ; 123(14): 142501, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31702209

RESUMEN

Exclusive cross sections and momentum distributions have been measured for quasifree one-neutron knockout reactions from a ^{54}Ca beam striking on a liquid hydrogen target at ∼200 MeV/u. A significantly larger cross section to the p_{3/2} state compared to the f_{5/2} state observed in the excitation of ^{53}Ca provides direct evidence for the nature of the N=34 shell closure. This finding corroborates the arising of a new shell closure in neutron-rich calcium isotopes. The distorted-wave impulse approximation reaction formalism with shell model calculations using the effective GXPF1Bs interaction and ab initio calculations concur our experimental findings. Obtained transverse and parallel momentum distributions demonstrate the sensitivity of quasifree one-neutron knockout in inverse kinematics on a thick liquid hydrogen target with the reaction vertex reconstructed to final state spin-parity assignments.

10.
Phys Rev Lett ; 122(22): 222502, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31283269

RESUMEN

A record number of ^{100}Sn nuclei was detected and new isotopic species toward the proton dripline were discovered at the RIKEN Nishina Center. Decay spectroscopy was performed with the high-efficiency detector arrays WAS3ABi and EURICA. Both the half-life and the ß-decay end point energy of ^{100}Sn were measured more precisely than the literature values. The value and the uncertainty of the resulting strength for the pure 0^{+}→1^{+} Gamow-Teller decay was improved to B_{GT}=4.4_{-0.7}^{+0.9}. A discrimination between different model calculations was possible for the first time, and the level scheme of ^{100}In is investigated further.

11.
Phys Rev Lett ; 122(21): 212502, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31283301

RESUMEN

The ß-delayed γ-ray spectroscopy of neutron-rich ^{123,125}Ag isotopes is investigated at the Radioactive Isotope Beam Factory of RIKEN, and the long-predicted 1/2^{-} ß-emitting isomers in ^{123,125}Ag are identified for the first time. With the new experimental results, the systematic trend of energy spacing between the lowest 9/2^{+} and 1/2^{-} levels is extended in Ag isotopes up to N=78, providing a clear signal for the reduction of the Z=40 subshell gap in Ag towards N=82. Shell-model calculations with the state-of-the-art V_{MU} plus M3Y spin-orbit interaction give a satisfactory description of the low-lying states in ^{123,125}Ag. The tensor force is found to play a crucial role in the evolution of the size of the Z=40 subshell gap. The observed inversion of the single-particle levels around ^{123}Ag can be well interpreted in terms of the monopole shift of the π1g_{9/2} orbitals mainly caused by the increasing occupation of ν1h_{11/2} orbitals.

12.
Phys Rev Lett ; 122(7): 072502, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30848641

RESUMEN

The first γ-ray spectroscopy of ^{52}Ar, with the neutron number N=34, was measured using the ^{53}K(p,2p) one-proton removal reaction at ∼210 MeV/u at the RIBF facility. The 2_{1}^{+} excitation energy is found at 1656(18) keV, the highest among the Ar isotopes with N>20. This result is the first experimental signature of the persistence of the N=34 subshell closure beyond ^{54}Ca, i.e., below the magic proton number Z=20. Shell-model calculations with phenomenological and chiral-effective-field-theory interactions both reproduce the measured 2_{1}^{+} systematics of neutron-rich Ar isotopes, and support a N=34 subshell closure in ^{52}Ar.

13.
Phys Rev Lett ; 122(16): 162503, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31075035

RESUMEN

Fifty-five inclusive single nucleon-removal cross sections from medium mass neutron-rich nuclei impinging on a hydrogen target at ∼250 MeV/nucleon are measured at the RIKEN Radioactive Isotope Beam Factory. Systematically higher cross sections are found for proton removal from nuclei with an even number of protons as compared to odd-proton number projectiles for a given neutron separation energy. Neutron removal cross sections display no even-odd splitting, contrary to nuclear cascade model predictions. Both effects are understood through simple considerations of neutron separation energies and bound state level densities originating in pairing correlations in the daughter nuclei. These conclusions are supported by comparison with semimicroscopic model predictions, highlighting the enhanced role of low-lying level densities in nucleon-removal cross sections from loosely bound nuclei.

15.
Br J Dermatol ; 179(5): 1135-1140, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29949203

RESUMEN

BACKGROUND: Midface toddler excoriation syndrome (MiTES) is a condition recently reported in three unrelated children. Habitual scratching from the first year of life inflicted deep, chronic, scarring wounds around the nose and eyes. One child had a mild neurological deficit but there was no other evidence of insensitivity to pain. Bilateral distribution and localization to the midface distinguish MiTES from other causes of self-inflicted skin damage such as trigeminal trophic syndrome. An earlier study of five siblings from a consanguineous Irish family, with lesions corresponding to MiTES plus other sensory deficits, showed homozygous mutations in a gene for hereditary sensory and autonomic neuropathy type VIII (HSAN8), PRDM12. OBJECTIVES: To study further cases of MiTES, including analysis of PRDM12. METHODS: We describe five further children, from four families, with facial lesions typical of MiTES, in whom mutation analysis of PRDM12 was carried out. RESULTS: Homozygous or compound heterozygous pathogenic expansions of the PRDM12 polyalanine tract were found in four of five affected individuals, in three families. CONCLUSIONS: Our finding of autosomal recessive mutations in PRDM12 in four of five patients with MiTES extends the phenotypic spectrum of PRDM12 mutations, which usually cause HSAN8, characterized by mutilating self-inflicted wounds of the extremities, lips and tongue. By contrast, MiTES shows severe midfacial lesions with little if any evidence of generalized pain insensitivity. The condition is probably genetically heterogeneous, and other congenital insensitivity to pain and HSAN genes such as SCN11A may be implicated. This new understanding of the nature of MiTES, which can masquerade as factitious disease, will facilitate appropriate management.


Asunto(s)
Proteínas Portadoras/genética , Genes Recesivos/genética , Proteínas del Tejido Nervioso/genética , Insensibilidad Congénita al Dolor/genética , Automutilación/etiología , Alelos , Preescolar , Consanguinidad , Análisis Mutacional de ADN , Cara , Femenino , Humanos , Lactante , Masculino , Mutación , Insensibilidad Congénita al Dolor/complicaciones , Síndrome
16.
Br J Dermatol ; 179(6): 1297-1306, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29727479

RESUMEN

BACKGROUND: Oral systemic immunomodulatory medication is regularly used off-licence in children with severe atopic eczema. However, there is no firm evidence regarding the effectiveness, safety, cost-effectiveness and impact on quality of life from an adequately powered randomized controlled trial (RCT) using systemic medication in children. OBJECTIVES: To assess whether there is a difference in the speed of onset, effectiveness, side-effect profile and reduction in flares post-treatment between ciclosporin (CyA) and methotrexate (MTX), and also the cost-effectiveness of the drugs. Treatment impact on quality of life will also be examined in addition to whether FLG genotype influences treatment response. In addition, the trial studies the immune-metabolic effects of CyA and MTX. METHODS: Multicentre, parallel group, assessor-blind, pragmatic RCT of 36 weeks' duration with a 24-week follow-up period. In total, 102 children aged 2-16 years with moderate-to-severe atopic eczema, unresponsive to topical treatment will be randomized (1 : 1) to receive MTX (0·4 mg kg-1 per week) or CyA (4 mg kg-1 per day). RESULTS: The trial has two primary outcomes: change from baseline to 12 weeks in Objective Severity Scoring of Atopic Dermatitis (o-SCORAD) and time to first significant flare following treatment cessation. CONCLUSIONS: This trial addresses important therapeutic questions, highlighted in systematic reviews and treatment guidelines for atopic eczema. The trial design is pragmatic to reflect current clinical practice.


Asunto(s)
Análisis Costo-Beneficio , Ciclosporina/administración & dosificación , Dermatitis Atópica/tratamiento farmacológico , Fármacos Dermatológicos/administración & dosificación , Metotrexato/administración & dosificación , Administración Oral , Adolescente , Niño , Preescolar , Ciclosporina/efectos adversos , Ciclosporina/economía , Dermatitis Atópica/diagnóstico , Dermatitis Atópica/economía , Dermatitis Atópica/genética , Fármacos Dermatológicos/efectos adversos , Fármacos Dermatológicos/economía , Femenino , Proteínas Filagrina , Humanos , Proteínas de Filamentos Intermediarios/genética , Masculino , Metotrexato/efectos adversos , Metotrexato/economía , Estudios Multicéntricos como Asunto , Ensayos Clínicos Pragmáticos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
17.
Phys Rev Lett ; 119(19): 192503, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29219499

RESUMEN

In this Letter, the observation of two previously unknown isotopes is presented for the first time: ^{72}Rb with 14 observed events and ^{77}Zr with one observed event. From the nonobservation of the less proton-rich nucleus ^{73}Rb, we derive an upper limit for the ground-state half-life of 81 ns, consistent with the previous upper limit of 30 ns. For ^{72}Rb, we have measured a half-life of 103(22) ns. This observation of a relatively long-lived odd-odd nucleus, ^{72}Rb, with a less exotic odd-even neighbor, ^{73}Rb, being unbound shows the diffuseness of the proton drip line and the possibility of sandbanks to exist beyond it. The ^{72}Rb half-life is consistent with a 5^{+}→5/2^{-} proton decay with an energy of 800-900 keV, in agreement with the atomic mass evaluation proton-separation energy as well as results from the finite-range droplet model and shell model calculations using the GXPF1A interaction. However, we cannot explicitly exclude the possibility of a proton transition between 9^{+}(^{72}Rb)→9/2^{+}(^{71}Kr) isomeric states with a broken mirror symmetry. These results imply that ^{72}Kr is a strong waiting point in x-ray burst rp-process scenarios.

18.
Phys Rev Lett ; 118(3): 032501, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157341

RESUMEN

The first measurement of the low-lying states of the neutron-rich ^{110}Zr and ^{112}Mo was performed via in-beam γ-ray spectroscopy after one proton removal on hydrogen at ∼200 MeV/nucleon. The 2_{1}^{+} excitation energies were found at 185(11) keV in ^{110}Zr, and 235(7) keV in ^{112}Mo, while the R_{42}=E(4_{1}^{+})/E(2_{1}^{+}) ratios are 3.1(2), close to the rigid rotor value, and 2.7(1), respectively. These results are compared to modern energy density functional based configuration mixing models using Gogny and Skyrme effective interactions. We conclude that first levels of ^{110}Zr exhibit a rotational behavior, in agreement with previous observations of lighter zirconium isotopes as well as with the most advanced Monte Carlo shell model predictions. The data, therefore, do not support a harmonic oscillator shell stabilization scenario at Z=40 and N=70. The present data also invalidate predictions for a tetrahedral ground state symmetry in ^{110}Zr.

19.
Phys Rev Lett ; 119(19): 192501, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29219515

RESUMEN

In-beam γ-ray spectroscopy of ^{79}Cu is performed at the Radioactive Isotope Beam Factory of RIKEN. The nucleus of interest is produced through proton knockout from a ^{80}Zn beam at 270 MeV/nucleon. The level scheme up to 4.6 MeV is established for the first time and the results are compared to Monte Carlo shell-model calculations. We do not observe significant knockout feeding to the excited states below 2.2 MeV, which indicates that the Z=28 gap at N=50 remains large. The results show that the ^{79}Cu nucleus can be described in terms of a valence proton outside a ^{78}Ni core, implying the magic character of the latter.

20.
Phys Rev Lett ; 118(24): 242502, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28665637

RESUMEN

The level structure of the neutron-rich ^{77}Cu nucleus is investigated through ß-delayed γ-ray spectroscopy at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. Ions of ^{77}Ni are produced by in-flight fission, separated and identified in the BigRIPS fragment separator, and implanted in the WAS3ABi silicon detector array, surrounded by Ge cluster detectors of the EURICA array. A large number of excited states in ^{77}Cu are identified for the first time by correlating γ rays with the ß decay of ^{77}Ni, and a level scheme is constructed by utilizing their coincidence relationships. The good agreement between large-scale Monte Carlo shell model calculations and experimental results allows for the evaluation of the single-particle structure near ^{78}Ni and suggests a single-particle nature for both the 5/2_{1}^{-} and 3/2_{1}^{-} states in ^{77}Cu, leading to doubly magic ^{78}Ni.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA