Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(3): 1360-1366, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31907311

RESUMEN

Tomkins et al. [A. G. Tomkins et al., Nature 533, 235-238 (2016)] suggested that iron oxides contained in 2.7-Ga iron micrometeorites can be used to determine the concentration of O2 in the Archean upper atmosphere. Specifically, they argued that the presence of magnetite in these objects implies that O2 must have been near present-day levels (∼21%) within the altitude range where the micrometeorites were melted during entry. Here, we reevaluate their data using a 1D photochemical model. We find that atomic oxygen, O, is the most abundant strong oxidant in the upper atmosphere, rather than O2 But data from shock tube experiments suggest that CO2 itself may also serve as the oxidant, in which case micrometeorite oxidation really constrains the CO2/N2 ratio, not the total oxidant abundance. For an atmosphere containing 0.8 bar of N2, like today, the lower limit on the CO2 mixing ratio is ∼0.23. This would produce a mean surface temperature of ∼300 K at 2.7 Ga, which may be too high, given evidence for glaciation at roughly this time. If pN2 was half the present value, and warming by other greenhouse gases like methane was not a major factor, the mean surface temperature would drop to ∼291 K, consistent with glaciation. This suggests that surface pressure in the Neoarchean may need to have been lower-closer to 0.6 bar-for CO2 to have oxidized the micrometeorites. Ultimately, iron micrometeorites may be an indicator for ancient atmospheric CO2 and surface pressure; and could help resolve discrepancies between climate models and existing CO2 proxies such as paleosols.

2.
Science ; 327(5968): 977-80, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20056856

RESUMEN

The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (approximately 0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

3.
Science ; 314(5806): 1728-31, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17170293

RESUMEN

Infrared spectra of material captured from comet 81P/Wild 2 by the Stardust spacecraft reveal indigenous aliphatic hydrocarbons similar to those in interplanetary dust particles thought to be derived from comets, but with longer chain lengths than those observed in the diffuse interstellar medium. Similarly, the Stardust samples contain abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene. The presence of crystalline silicates in Wild 2 is consistent with mixing of solar system and interstellar matter. No hydrous silicates or carbonate minerals were detected, which suggests a lack of aqueous processing of Wild 2 dust.


Asunto(s)
Hidrocarburos/análisis , Meteoroides , Silicatos/análisis , Polvo Cósmico/análisis , Nave Espacial , Espectroscopía Infrarroja por Transformada de Fourier
4.
Science ; 314(5806): 1711-6, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17170289

RESUMEN

The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.

5.
Science ; 314(5806): 1731-5, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17170294

RESUMEN

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA