Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 34(14): 1905-24, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25971775

RESUMEN

Translation of aberrant or problematic mRNAs can cause ribosome stalling which leads to the production of truncated or defective proteins. Therefore, cells evolved cotranslational quality control mechanisms that eliminate these transcripts and target arrested nascent polypeptides for proteasomal degradation. Here we show that Not4, which is part of the multifunctional Ccr4-Not complex in yeast, associates with polysomes and contributes to the negative regulation of protein synthesis. Not4 is involved in translational repression of transcripts that cause transient ribosome stalling. The absence of Not4 affected global translational repression upon nutrient withdrawal, enhanced the expression of arrested nascent polypeptides and caused constitutive protein folding stress and aggregation. Similar defects were observed in cells with impaired mRNA decapping protein function and in cells lacking the mRNA decapping activator and translational repressor Dhh1. The results suggest a role for Not4 together with components of the decapping machinery in the regulation of protein expression on the mRNA level and emphasize the importance of translational repression for the maintenance of proteome integrity.


Asunto(s)
Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Homeostasis , Polilisina/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión a Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas Represoras , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética
2.
Planta ; 236(1): 63-77, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22258747

RESUMEN

Sorting of transmembrane proteins into the inner vesicles of multivesicular bodies for subsequent delivery to the vacuole/lysosome can be induced by attachment of a single ubiquitin or K63-linked ubiquitin chains to the cytosolic portion of the cargo in yeast and mammals. In plants, large efforts have been undertaken to elucidate the mechanisms of vacuolar trafficking of soluble proteins. Sorting of transmembrane proteins, by contrast, is still largely unexplored. As a proof of principle, that ubiquitin is involved in vacuolar sorting in plants we show that a translational fusion of a single ubiquitin to the Arabidopsis plasma membrane ATPase PMA-EGFP is sufficient to induce its endocytosis and sorting into the vacuolar lumen. Sorting of the artificial reporter is not dependent on ubiquitin chain formation, but involves ubiquitin's hydrophobic patch and can be inhibited by coexpression of a dominant-negative version of the ESCRT (endosomal sorting complex required for transport) related protein AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1). Our results suggest that ubiquitin can in principle act as vacuolar sorting signal in plants.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Arabidopsis/metabolismo , Membrana Celular/enzimología , Transporte de Proteínas/fisiología , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Vacuolas/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Transducción de Señal , Ubiquitinación
3.
Mol Biol Cell ; 29(3): 256-269, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212875

RESUMEN

Aggregation processes can cause severe perturbations of cellular homeostasis and are frequently associated with diseases. We performed a comprehensive analysis of mitochondrial quality and function in the presence of aggregation-prone polypeptides. Despite a significant aggregate formation inside mitochondria, we observed only a minor impairment of mitochondrial function. Detoxification of aggregated reporter polypeptides as well as misfolded endogenous proteins inside mitochondria takes place via their sequestration into a specific organellar deposit site we termed intramitochondrial protein quality control compartment (IMiQ). Only minor amounts of endogenous proteins coaggregated with IMiQ deposits and neither resolubilization nor degradation by the mitochondrial protein quality control system were observed. The single IMiQ aggregate deposit was not transferred to daughter cells during cell division. Detoxification of aggregates via IMiQ formation was highly dependent on a functional mitochondrial fission machinery. We conclude that the formation of an aggregate deposit is an important mechanism to maintain full functionality of mitochondria under proteotoxic stress conditions.


Asunto(s)
Mitocondrias/patología , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Homeostasis , Mitocondrias/metabolismo , Orgánulos/metabolismo , Péptidos , Agregado de Proteínas/fisiología , Pliegue de Proteína , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetrahidrofolato Deshidrogenasa/genética
4.
Mol Biol Cell ; 27(21): 3257-3272, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27630262

RESUMEN

Aß peptides play a central role in the etiology of Alzheimer disease (AD) by exerting cellular toxicity correlated with aggregate formation. Experimental evidence has shown intraneuronal accumulation of Aß peptides and interference with mitochondrial functions. Nevertheless, the relevance of intracellular Aß peptides in the pathophysiology of AD is controversial. Here we found that the two major species of Aß peptides, in particular Aß42, exhibited a strong inhibitory effect on the preprotein import reactions essential for mitochondrial biogenesis. However, Aß peptides interacted only weakly with mitochondria and did not affect the inner membrane potential or the structure of the preprotein translocase complexes. Aß peptides significantly decreased the import competence of mitochondrial precursor proteins via an extramitochondrial coaggregation mechanism. Coaggregation and import inhibition were significantly stronger for the longer peptide Aß42, correlating with its importance in AD pathology. Our results demonstrate that direct interference of aggregation-prone Aß peptides with mitochondrial protein biogenesis represents a crucial aspect of the pathobiochemical mechanisms contributing to cellular damage in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/fisiología , Agregación Patológica de Proteínas/fisiopatología , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Técnicas de Cultivo de Célula , Células HeLa , Humanos , Potenciales de la Membrana , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas
5.
Essays Biochem ; 60(2): 213-225, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27744337

RESUMEN

Mitochondria are essential constituents of a eukaryotic cell by supplying ATP and contributing to many mayor metabolic processes. As endosymbiotic organelles, they represent a cellular subcompartment exhibiting many autonomous functions, most importantly containing a complete endogenous machinery responsible for protein expression, folding and degradation. This article summarizes the biochemical processes and the enzymatic components that are responsible for maintaining mitochondrial protein homoeostasis. As mitochondria lack a large part of the required genetic information, most proteins are synthesized in the cytosol and imported into the organelle. After reaching their destination, polypeptides must fold and assemble into active proteins. Under pathological conditions, mitochondrial proteins become misfolded or damaged and need to be repaired with the help of molecular chaperones or eventually removed by specific proteases. Failure of these protein quality control mechanisms results in loss of mitochondrial function and structural integrity. Recently, novel mechanisms have been identified that support mitochondrial quality on the organellar level. A mitochondrial unfolded protein response allows the adaptation of chaperone and protease activities. Terminally damaged mitochondria may be removed by a variation of autophagy, termed mitophagy. An understanding of the role of protein quality control in mitochondria is highly relevant for many human pathologies, in particular neurodegenerative diseases.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Humanos , Agregado de Proteínas , Biosíntesis de Proteínas , Pliegue de Proteína , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA