RESUMEN
CLN8 disease is a rare form of neuronal ceroid lipofuscinosis caused by biallelic mutations in the CLN8 gene, which encodes a transmembrane endoplasmic reticulum protein involved in trafficking of lysosomal enzymes. CLN8 disease patients present with myoclonus, tonic-clonic seizures, and progressive declines in cognitive and motor function, with many cases resulting in premature death early in life. There are currently no treatments that can cure the disease or substantially slow disease progression. Using a mouse model of CLN8 disease, we tested the safety and efficacy of an intracerebroventricularly (i.c.v.) delivered self-complementary adeno-associated virus serotype 9 (scAAV9) gene therapy vector driving expression of human CLN8. A single neonatal injection was safe and well tolerated, resulting in robust transgene expression throughout the CNS from 4 to 24 months, reducing histopathological and behavioral hallmarks of the disease and restoring lifespan from 10 months in untreated animals to beyond 24 months of age in treated animals. While it is unclear whether some of these behavioral improvements relate to preserved visual function, improvements in learning/memory, or other central or peripheral benefits, these results demonstrate, by far, the most successful degree of rescue reported in an animal model of CLN8 disease, and they support further development of gene therapy for this disorder.
Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Animales , Conducta Animal , Modelos Animales de Enfermedad , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Transgenes , Resultado del TratamientoAsunto(s)
1-Desoxinojirimicina , Terapia de Reemplazo Enzimático , Enfermedad del Almacenamiento de Glucógeno Tipo II , Manosafosfatos , Animales , Ratones , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/administración & dosificación , 1-Desoxinojirimicina/uso terapéutico , Terapia de Reemplazo Enzimático/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , alfa-Glucosidasas/metabolismo , Humanos , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacologíaRESUMEN
BACKGROUND: CLN3 disease (also known as CLN3 Batten disease or Juvenile Neuronal Ceroid Lipofuscinosis) is a rare pediatric neurodegenerative disorder caused by biallelic mutations in CLN3. While extensive efforts have been undertaken to understand CLN3 disease etiology, pathology, and clinical progression, little is known about the impact of CLN3 disease on parents and caregivers. Here, we investigated CLN3 disease progression, clinical care, and family experiences using semi-structured interviews with 39 parents of individuals with CLN3 disease. Analysis included response categorization by independent observers and quantitative methods. RESULTS: Parents reported patterns of disease progression that aligned with previous reports. Insomnia and thought- and mood-related concerns were reported frequently. "Decline in visual acuity" was the first sign/symptom noticed by n = 28 parents (70%). A minority of parents reported "behavioral issues" (n = 5, 12.5%), "communication issues" (n = 3, 7.5%), "cognitive decline" (n = 1, 2.5%), or "seizures" (n = 1, 2.5%) as the first sign/symptom. The mean time from the first signs or symptoms to a diagnosis of CLN3 disease was 2.8 years (SD = 4.1). Misdiagnosis was common, being reported by n = 24 participants (55.8%). Diagnostic tests and treatments were closely aligned with observed symptoms. Desires for improved or stabilized vision (top therapeutic treatment concern for n = 14, 32.6%), cognition (n = 8, 18.6%), and mobility (n = 3, 7%) dominated parental concerns and wishes for therapeutic correction. Family impacts were common, with n = 34 (81%) of respondents reporting a financial impact on the family and n = 20 (46.5%) reporting marital strain related to the disease. CONCLUSIONS: Collectively, responses demonstrated clear patterns of disease progression, a strong desire for therapies to treat symptoms related to vision and cognition, and a powerful family impact driven by the unrelenting nature of disease progression.
Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Humanos , Niño , Lipofuscinosis Ceroideas Neuronales/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/uso terapéutico , Glicoproteínas de Membrana/genética , Padres , Progresión de la Enfermedad , Encuestas y CuestionariosRESUMEN
Lysosomal storage disorders (LSDs) are a genetically and clinically diverse group of diseases characterized by lysosomal dysfunction. Batten disease is a family of severe LSDs primarily impacting the central nervous system. Here we show that AF38469, a small molecule inhibitor of sortilin, improves lysosomal and glial pathology across multiple LSD models. Live-cell imaging and comparative transcriptomics demonstrates that the transcription factor EB (TFEB), an upstream regulator of lysosomal biogenesis, is activated upon treatment with AF38469. Utilizing CLN2 and CLN3 Batten disease mouse models, we performed a short-term efficacy study and show that treatment with AF38469 prevents the accumulation of lysosomal storage material and the development of neuroinflammation, key disease associated pathologies. Tremor phenotypes, an early behavioral phenotype in the CLN2 disease model, were also completely rescued. These findings reveal sortilin inhibition as a novel and highly efficacious therapeutic modality for the treatment of multiple forms of Batten disease.
RESUMEN
Mouse models of CLN3 Batten disease, a rare lysosomal storage disorder with no cure, have improved our understanding of CLN3 biology and therapeutics through their ease of use and a consistent display of cellular pathology. However, the translatability of murine models is limited by disparities in anatomy, body size, life span and inconsistent subtle behavior deficits that can be difficult to detect in CLN3 mutant mouse models, thereby limiting their use in preclinical studies. Here, we present a longitudinal characterization of a novel miniswine model of CLN3 disease that recapitulates the most common human pathogenic variant, an exon 7-8 deletion (CLN3Δex7/8). Progressive pathology and neuron loss is observed in various regions of the CLN3Δex7/8 miniswine brain and retina. Additionally, mutant miniswine present with retinal degeneration and motor abnormalities, similar to deficits seen in humans diagnosed with the disease. Taken together, the CLN3Δex7/8 miniswine model shows consistent and progressive Batten disease pathology, and behavioral impairment mirroring clinical presentation, demonstrating its value in studying the role of CLN3 and safety/efficacy of novel disease-modifying therapeutics.
Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Lipofuscinosis Ceroideas Neuronales , Ratones , Humanos , Animales , Porcinos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Chaperonas Moleculares , Retina/patología , Fenotipo , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/genéticaRESUMEN
CLN3 disease, caused by biallelic mutations in the CLN3 gene, is a rare pediatric neurodegenerative disease that has no cure or disease modifying treatment. The development of effective treatments has been hindered by a lack of etiological knowledge, but gene replacement has emerged as a promising therapeutic platform for such disorders. Here, we utilize a mouse model of CLN3 disease to test the safety and efficacy of a cerebrospinal fluid-delivered AAV9 gene therapy with a study design optimized for translatability. In this model, postnatal day one administration of the gene therapy virus resulted in robust expression of human CLN3 throughout the CNS over the 24-month duration of the study. A range of histopathological and behavioral parameters were assayed, with the therapy consistently and persistently rescuing a number of hallmarks of disease while being safe and well-tolerated. Together, the results show great promise for translation of the therapy into the clinic, prompting the launch of a first-in-human clinical trial (NCT03770572).
RESUMEN
Batten disease is a family of rare, lysosomal disorders caused by mutations in one of at least 13 genes, which encode a diverse set of lysosomal and extralysosomal proteins. Despite decades of research, the development of effective therapies has remained intractable. But now, the field is experiencing rapid, unprecedented progress on multiple fronts. New tools are providing insights into previously unsolvable problems, with molecular functions now known for nine Batten disease proteins. Protein interactome data are uncovering potential functional overlap between several Batten disease proteins, providing long-sought links between seemingly disparate proteins. Understanding of cellular etiology is elucidating contributions from and interactions between various CNS cell types. Collectively, this explosion in insight is hastening an unparalleled period of therapeutic breakthroughs, with multiple therapies showing great promise in preclinical and clinical studies. The coming years will provide a continuation of this rapid progress, with the promise of effective treatments giving patients hope.
Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Humanos , Lisosomas , Mutación , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapiaRESUMEN
CLN7 Batten disease, also known as variant late infantile neuronal ceroid lipofuscinosis type 7 (vLINCL7), is an ultra-rare form of Batten disease that presents early in life with severe neurological symptoms, including visual deficits, motor problems, and frequent seizures. There is high unmet need for disease-modifying therapies, as no existing treatment can halt progression or prevent premature death. In this issue of the JCI, Chen et al. present an AAV gene therapy for CLN7 that shows marked benefit in a mouse model of CLN7 Batten disease, paving the way for a phase I trial. The candidate gene therapy shows benefit for histopathology, behavioral abnormalities, and survival in mice and offers an acceptable safety profile in both mice and rats. Questions remain regarding dose, scaling, and timing of administration for patients, but this work is a substantial step forward for a very challenging disease.
Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Animales , Modelos Animales de Enfermedad , Terapia Genética , Humanos , Ratones , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/terapia , Ratas , Convulsiones/terapiaRESUMEN
Ependymal cells (ECs) line the ventricular surfaces of the mammalian central nervous system (CNS) and their development is indispensable to structural integrity and functions of the CNS. We previously reported that EC-specific genetic deletion of the myristoylated alanine-rich protein kinase C substrate (Marcks) disrupts barrier functions and elevates oxidative stress and lipid droplet accumulation in ECs causing precocious cellular aging. However, little is known regarding the mechanisms that mediate these changes in ECs. To gain insight into Marcks-mediated mechanisms, we performed mass spectrometric analyses on Marcks-associated proteins in young and aged ECs in the mouse forebrain using an integrated approach. Network analysis on annotated proteins revealed that the identified Marcks-associated complexes are in part involved in protein transport mechanisms in young ECs. In fact, we found perturbed intracellular vesicular trafficking in cultured ECs with selective deletion of Marcks (Marcks-cKO mice), or upon pharmacological alteration to phosphorylation status of Marcks. In comparison, Marcks-associated protein complexes in aged ECs appear to be involved in regulation of lipid metabolism and responses to oxidative stress. Confirming this, we found elevated signatures of inflammation in the cerebral cortices and the hippocampi of young Marcks-cKO mice. Interestingly, behavioral testing using a water maze task indicated that spatial learning and memory is diminished in young Marcks-cKO mice similar to aged wildtype mice. Taken together, our study provides first line of evidence for potential mechanisms that may mediate differential Marcks functions in young and old ECs, and their effect on forebrain homeostasis during aging.
Asunto(s)
Epéndimo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Animales , Fosforilación , Epéndimo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/metabolismo , Proteoma/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa C/metabolismo , Homeostasis , Prosencéfalo/metabolismo , Mamíferos/metabolismoRESUMEN
CLN2 Batten disease is a lysosomal disorder in which pathogenic variants in CLN2 lead to reduced activity in the enzyme tripeptidyl peptidase 1. The disease typically manifests around 2 to 4 years of age with developmental delay, ataxia, seizures, inability to speak and walk, and fatality between 6 and 12 years of age. Multiple Cln2 mouse models exist to better understand the etiology of the disease; however, these models are unable to adequately recapitulate the disease due to differences in anatomy and physiology, limiting their utility for therapeutic testing. Here, we describe a new CLN2R208X/R208X porcine model of CLN2 disease. We present comprehensive characterization showing behavioral, pathological, and visual phenotypes that recapitulate those seen in CLN2 patients. CLN2R208X/R208X miniswine present with gait abnormalities at 6 months of age, ERG waveform declines at 6-9 months, vision loss at 11 months, cognitive declines at 12 months, seizures by 15 months, and early death at 18 months due to failure to thrive. CLN2R208X/R208X miniswine also showed classic storage material accumulation and glial activation in the brain at 6 months, and cortical atrophy at 12 months. Thus, the CLN2R208X/R208X miniswine model is a valuable resource for biomarker discovery and therapeutic development in CLN2 disease.
Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Ratones , Animales , Porcinos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/uso terapéutico , Aminopeptidasas/genética , Aminopeptidasas/uso terapéutico , Serina Proteasas/genética , Serina Proteasas/uso terapéutico , Fenotipo , Convulsiones/tratamiento farmacológicoRESUMEN
Introduction: CLN3 Batten disease is a rare pediatric neurodegenerative lysosomal disorder caused by biallelic disease-associated variants in CLN3. Despite decades of intense research, specific biofluid biomarkers of disease status have not been reported, hindering clinical development of therapies. Thus, we sought to determine whether individuals with CLN3 Batten disease have elevated levels of specific metabolites in blood. Methods: We performed an exhaustive metabolomic screen using serum samples from a novel minipig model of CLN3 Batten disease and validated findings in CLN3 pig serum and CSF and Cln3 mouse serum. We further validate biomarker candidates with a retrospective analysis of plasma and CSF samples collected from participants in a natural history study. Plasma samples were evaluated from 22 phenotyped individuals with CLN3 disease, 15 heterozygous carriers, and 6 non-affected non-carriers (NANC). Results: CLN3 pig serum samples from 4 ages exhibited large elevations in 4 glycerophosphodiester species: glycerophosphoinositol (GPI), glycerophosphoethanolamine (GPE), glycerophosphocholine (GPC), and glycerophosphoserine (GPS). GPI and GPE exhibited the largest elevations, with similar elevations found in CLN3 pig CSF and Cln3 mouse serum. In plasma samples from individuals with CLN3 disease, glycerophosphoethanolamine and glycerophosphoinositol were significantly elevated with glycerophosphoinositol exhibiting the clearest separation (mean 0.1338 vs 0.04401 nmol/mL for non-affected non-carriers). Glycerophosphoinositol demonstrated excellent sensitivity and specificity as a biomarker, with a receiver operating characteristic area under the curve of 0.9848 (P = .0003). Conclusions: GPE and GPI could have utility as biomarkers of CLN3 disease status. GPI, in particular, shows consistent elevations across a diverse cohort of individuals with CLN3. This raises the potential to use these biomarkers as a blood-based diagnostic test or as an efficacy measure for disease-modifying therapies.
RESUMEN
Batten disease is unique among lysosomal storage disorders for the early and profound manifestation in the central nervous system, but little is known regarding potential neuron-specific roles for the disease-associated proteins. We demonstrate substantial overlap in the protein interactomes of three transmembrane Batten proteins (CLN3, CLN6, and CLN8), and that their absence leads to synaptic depletion of key partners (i.e., SNAREs and tethers) and altered synaptic SNARE complexing in vivo, demonstrating a novel shared etiology.
RESUMEN
While research has accelerated the development of new treatments for pediatric neurodegenerative disorders, the ability to demonstrate the long-term efficacy of these therapies has been hindered by the lack of convincing, noninvasive methods for tracking disease progression both in animal models and in human clinical trials. Here, we unveil a new translational platform for tracking disease progression in an animal model of a pediatric neurodegenerative disorder, CLN6-Batten disease. Instead of looking at a handful of parameters or a single "needle in a haystack", we embrace the idea that disease progression, in mice and patients alike, is a diverse phenomenon best characterized by a combination of relevant biomarkers. Thus, we employed a multi-modal quantitative approach where 144 parameters were longitudinally monitored to allow for individual variability. We use a range of noninvasive neuroimaging modalities and kinematic gait analysis, all methods that parallel those commonly used in the clinic, followed by a powerful statistical platform to identify key progressive anatomical and metabolic changes that correlate strongly with the progression of pathological and behavioral deficits. This innovative, highly sensitive platform can be used as a powerful tool for preclinical studies on neurodegenerative diseases, and provides proof-of-principle for use as a potentially translatable tool for clinicians in the future.
Asunto(s)
Biomarcadores , Encéfalo/diagnóstico por imagen , Progresión de la Enfermedad , Trastornos Neurológicos de la Marcha/diagnóstico , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Animales , Fenómenos Biomecánicos , Encéfalo/metabolismo , Encéfalo/patología , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Femenino , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/patología , Trastornos Neurológicos de la Marcha/fisiopatología , Estudios Longitudinales , Masculino , Proteínas de la Membrana , Ratones , Ratones Transgénicos , Lipofuscinosis Ceroideas Neuronales/complicaciones , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Tomografía de Emisión de Positrones , Análisis de Componente PrincipalRESUMEN
Intracellular protein-protein interactions are dynamic events requiring tightly regulated spatial and temporal checkpoints. But how are these spatial and temporal cues integrated to produce highly specific molecular response patterns? A helpful analogy to this process is that of a cellular map, one based on the fleeting localization and activity of various coordinating proteins that direct a wide array of interactions between key molecules. One such protein, myristoylated alanine-rich C-kinase substrate (MARCKS) has recently emerged as an important component of this cellular map, governing a wide variety of protein interactions in every cell type within the brain. In addition to its well-documented interactions with the actin cytoskeleton, MARCKS has been found to interact with a number of other proteins involved in processes ranging from intracellular signaling to process outgrowth. Here, we will explore these diverse interactions and their role in an array of brain-specific functions that have important implications for many neurological conditions.