Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2215095120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585460

RESUMEN

Cancer cachexia, and its associated complications, represent a large and currently untreatable roadblock to effective cancer management. Many potential therapies have been proposed and tested-including appetite stimulants, targeted cytokine blockers, and nutritional supplementation-yet highly effective therapies are lacking. Innovative approaches to treating cancer cachexia are needed. Members of the Kruppel-like factor (KLF) family play wide-ranging and important roles in the development, maintenance, and metabolism of skeletal muscle. Within the KLF family, we identified KLF10 upregulation in a multitude of wasting contexts-including in pancreatic, lung, and colon cancer mouse models as well as in human patients. We subsequently interrogated loss-of-function of KLF10 as a potential strategy to mitigate cancer associated muscle wasting. In vivo studies leveraging orthotopic implantation of pancreas cancer cells into wild-type and KLF10 KO mice revealed significant preservation of lean mass and robust suppression of pro-atrophy muscle-specific ubiquitin ligases Trim63 and Fbxo32, as well as other factors implicated in atrophy, calcium signaling, and autophagy. Bioinformatics analyses identified Transforming growth factor beta (TGF-ß), a known inducer of KLF10 and cachexia promoting factor, as a key upstream regulator of KLF10. We provide direct in vivo evidence that KLF10 KO mice are resistant to the atrophic effects of TGF-ß. ChIP-based binding studies demonstrated direct binding to Trim63, a known wasting-associated atrogene. Taken together, we report a critical role for the TGF-ß/KLF10 axis in the etiology of pancreatic cancer-associated muscle wasting and highlight the utility of targeting KLF10 as a strategy to prevent muscle wasting and limit cancer-associated cachexia.


Asunto(s)
Neoplasias Pancreáticas , Factor de Crecimiento Transformador beta , Humanos , Ratones , Animales , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Caquexia/genética , Atrofia Muscular/genética , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(41): E9580-E9589, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30257941

RESUMEN

Triple-negative breast cancer (TNBC) accounts for a disproportionately high number of deaths due to a lack of targeted therapies and an increased likelihood of distant recurrence. Estrogen receptor beta (ERß), a well-characterized tumor suppressor, is expressed in 30% of TNBCs, and its expression is associated with improved patient outcomes. We demonstrate that therapeutic activation of ERß elicits potent anticancer effects in TNBC through the induction of a family of secreted proteins known as the cystatins, which function to inhibit canonical TGFß signaling and suppress metastatic phenotypes both in vitro and in vivo. These data reveal the involvement of cystatins in suppressing breast cancer progression and highlight the value of ERß-targeted therapies for the treatment of TNBC patients.


Asunto(s)
Cistatinas/metabolismo , Receptor beta de Estrógeno/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Cistatinas/genética , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/genética , Femenino , Humanos , Ratones , Factor de Crecimiento Transformador beta/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteínas Supresoras de Tumor/agonistas , Proteínas Supresoras de Tumor/genética
3.
Breast Cancer Res ; 22(1): 51, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32430040

RESUMEN

BACKGROUND: The tamoxifen metabolite, Z-endoxifen, demonstrated promising antitumor activity in endocrine-resistant estrogen receptor-positive (ER+) breast cancer. We compared the antitumor activity of Z-endoxifen with tamoxifen and letrozole in the letrozole-sensitive MCF7 aromatase expressing model (MCF7AC1), as well as with tamoxifen, fulvestrant, exemestane, and exemestane plus everolimus in a letrozole-resistant MCF7 model (MCF7LR). METHODS: MCF7AC1 tumor-bearing mice were randomized to control (no drug), letrozole (10 µg/day), tamoxifen (500 µg/day), or Z-endoxifen (25 and 75 mg/kg). Treatment in the letrozole arm was continued until resistance developed. MCF7LR tumor-bearing mice were then randomized to Z-endoxifen (50 mg/kg) or tamoxifen for 4 weeks and tumors harvested for microarray and immunohistochemistry analysis. The antitumor activity of Z-endoxifen in the MCF7LR tumors was further compared in a second in vivo study with exemestane, exemestane plus everolimus, and fulvestrant. RESULTS: In the MCF7AC1 tumors, both Z-endoxifen doses were significantly superior to control and tamoxifen in reducing tumor volumes at 4 weeks. Additionally, the 75 mg/kg Z-endoxifen dose was additionally superior to letrozole. Prolonged letrozole exposure resulted in resistance at 25 weeks. In MCF7LR tumor-bearing mice, Z-endoxifen significantly reduced tumor volumes compared to tamoxifen, letrozole, and exemestane, with no significant differences compared to exemestane plus everolimus and fulvestrant. Additionally, compared to tamoxifen, Z-endoxifen markedly inhibited ERα target genes, Ki67 and Akt expression in vivo. CONCLUSION: In endocrine-sensitive and letrozole-resistant breast tumors, Z-endoxifen results in robust antitumor and antiestrogenic activity compared to tamoxifen and aromatase inhibitor monotherapy. These data support the ongoing development of Z-endoxifen.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Receptores de Estrógenos/metabolismo , Tamoxifeno/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Letrozol/farmacología , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Tamoxifeno/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Breast Cancer Res Treat ; 179(1): 241-249, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31571071

RESUMEN

PURPOSE: Significant controversy exists regarding the expression patterns of estrogen receptor beta (ERß) in normal and diseased breast tissue. To address this issue, we have validated two ERß antibodies, optimized the IHC protocols for both antibodies and now report the expression patterns of ERß in normal and malignant breast tissues. METHODS: ERß antibody specificity was determined using western blot and IHC analysis. ERß protein expression patterns were assessed via IHC in normal breast tissue and invasive breast carcinoma. Further, we report the detailed protocol of the ERß IHC assay developed in our CAP/CLIA certified laboratory to provide a standardized method for future studies. RESULTS: We have confirmed the specificity of two independent ERß monoclonal antibodies, one that detects total (i.e., full length plus splice variants 2-5, which do not include the ligand binding domain) ERß protein (PPZ0506) and one that detects only the full-length form, which includes the ligand binding domain, of ERß (PPG5/10). Using these two antibodies, we demonstrate that ERß is highly expressed in normal human breast tissue as well as in 20-30% of invasive breast cancers. Further, these two antibodies exhibited similar staining patterns across multiple different tissues and were highly concordant with regard to determining ERß positivity in breast cancers. CONCLUSIONS: ERß protein was shown to be abundant in the majority of normal breast epithelial cells and is present in 20-30% of breast cancers. Use of these two antibodies, along with their standardized IHC protocols, provide a reference for future studies aimed at determining the utility of ERß as a prognostic and/or predictive biomarker in various tissues of benign or malignant states.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Neoplasias de la Mama/diagnóstico , Mama/metabolismo , Receptor beta de Estrógeno/metabolismo , Empalme Alternativo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Detección Precoz del Cáncer , Receptor beta de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Sensibilidad y Especificidad
5.
Nucleic Acids Res ; 45(9): 5170-5182, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28201653

RESUMEN

We have previously demonstrated that TGFß Inducible Early Gene-1 (TIEG1), also known as KLF10, plays important roles in mediating skeletal development and homeostasis in mice. TIEG1 has also been identified in clinical studies as one of a handful of genes whose altered expression levels or allelic variations are associated with decreased bone mass and osteoporosis in humans. Here, we provide evidence for the first time that TIEG1 is involved in regulating the canonical Wnt signaling pathway in bone through multiple mechanisms of action. Decreased Wnt signaling in the absence of TIEG1 expression is shown to be in part due to impaired ß-catenin nuclear localization resulting from alterations in the activity of AKT and GSK-3ß. We also provide evidence that TIEG1 interacts with, and serves as a transcriptional co-activator for, Lef1 and ß-catenin. Changes in Wnt signaling in the setting of altered TIEG1 expression and/or activity may in part explain the observed osteopenic phenotype of TIEG1 KO mice as well as the known links between TIEG1 expression levels/allelic variations and patients with osteoporosis.


Asunto(s)
Huesos/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Huesos/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ligandos , Cloruro de Litio/farmacología , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Cráneo/citología , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética
6.
J Cell Physiol ; 233(4): 3540-3551, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29044507

RESUMEN

TIEG knockout (KO) mice exhibit a female-specific osteopenic phenotype and altered expression of TIEG in humans is associated with osteoporosis. Gene expression profiling studies identified sclerostin as one of the most highly up-regulated transcripts in the long bones of TIEG KO mice relative to WT littermates suggesting that TIEG may regulate SOST expression. TIEG was shown to substantially suppress SOST promoter activity and the regulatory elements through which TIEG functions were identified using promoter deletion and chromatin immunoprecipitation assays. Knockdown of TIEG in IDG-SW3 osteocyte cells using shRNA and CRISPR-Cas9 technology resulted in increased SOST expression and delayed mineralization, mimicking the results obtained from TIEG KO mouse bones. Given that TIEG is an estrogen regulated gene, and as changes in the hormonal milieu affect SOST expression, we performed ovariectomy (OVX) and estrogen replacement therapy (ERT) studies in WT and TIEG KO mice followed by miRNA and mRNA sequencing of cortical and trabecular compartments of femurs. SOST expression levels were considerably higher in cortical bone compared to trabecular bone. In cortical bone, SOST expression was increased following OVX only in WT mice and was suppressed following ERT in both genotypes. In contrast, SOST expression in trabecular bone was decreased following OVX and significantly increased following ERT. Interestingly, a number of miRNAs that are predicted to target sclerostin exhibited inverse expression levels in response to OVX and ERT. These data implicate important roles for TIEG and estrogen-regulated miRNAs in modulating SOST expression in bone.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Estrógenos/farmacología , Glicoproteínas/metabolismo , Osteocitos/efectos de los fármacos , Esqueleto/metabolismo , Factores de Transcripción/deficiencia , Proteínas Adaptadoras Transductoras de Señales , Animales , Densidad Ósea/efectos de los fármacos , Densidad Ósea/fisiología , Proteínas Morfogenéticas Óseas/metabolismo , Huesos/metabolismo , Femenino , Marcadores Genéticos/fisiología , Péptidos y Proteínas de Señalización Intercelular , Ratones Noqueados , Osteocitos/metabolismo , Ovariectomía/métodos , Esqueleto/efectos de los fármacos
7.
NPJ Breast Cancer ; 9(1): 101, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114522

RESUMEN

Endoxifen, a secondary tamoxifen metabolite, is a potent antiestrogen exhibiting estrogen receptor alpha (ERα) binding at nanomolar concentrations. Phase I/II clinical trials identified clinical activity of Z-endoxifen (ENDX), in endocrine-refractory metastatic breast cancer as well as ERα+ solid tumors, raising the possibility that ENDX may have a second, ERα-independent, mechanism of action. An unbiased mass spectrometry approach revealed that ENDX concentrations achieved clinically with direct ENDX administration (5 µM), but not low concentrations observed during tamoxifen treatment (<0.1 µM), profoundly altered the phosphoproteome of the aromatase expressing MCF7AC1 cells with limited impact on the total proteome. Computational analysis revealed protein kinase C beta (PKCß) and protein kinase B alpha or AKT1 as potential kinases responsible for mediating ENDX effects on protein phosphorylation. ENDX more potently inhibited PKCß1 kinase activity compared to other PKC isoforms, and ENDX binding to PKCß1 was confirmed using Surface Plasma Resonance. Under conditions that activated PKC/AKT signaling, ENDX induced PKCß1 degradation, attenuated PKCß1-activated AKTSer473 phosphorylation, diminished AKT substrate phosphorylation, and induced apoptosis. ENDX's effects on AKT were phenocopied by siRNA-mediated PKCß1 knockdown or treatment with the pan-AKT inhibitor, MK-2206, while overexpression of constitutively active AKT diminished ENDX-induced apoptosis. These findings, which identify PKCß1 as an ENDX target, indicate that PKCß1/ENDX interactions suppress AKT signaling and induce apoptosis in breast cancer.

8.
NPJ Breast Cancer ; 8(1): 20, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177654

RESUMEN

Triple Negative Breast Cancer (TNBC) accounts for 15-20% of all breast cancer cases, yet is responsible for a disproportionately high percentage of breast cancer mortalities. Thus, there is an urgent need to identify novel biomarkers and therapeutic targets based on the molecular events driving TNBC pathobiology. Estrogen receptor beta (ERß) is known to elicit anti-cancer effects in TNBC, however its mechanisms of action remain elusive. Here, we report the expression profiles of ERß and its association with clinicopathological features and patient outcomes in the largest cohort of TNBC to date. In this cohort, ERß was expressed in approximately 18% of TNBCs, and expression of ERß was associated with favorable clinicopathological features, but correlated with different overall survival outcomes according to menopausal status. Mechanistically, ERß formed a co-repressor complex involving enhancer of zeste homologue 2/polycomb repressive complex 2 (EZH2/PRC2) that functioned to suppress oncogenic NFκB/RELA (p65) activity. Importantly, p65 was shown to be required for formation of this complex and for ERß-mediated suppression of TNBC. Our findings indicate that ERß+ tumors exhibit different characteristics compared to ERß- tumors and demonstrate that ERß functions as a molecular switch for EZH2, repurposing it for tumor suppressive activities and repression of oncogenic p65 signaling.

9.
Mol Cancer Res ; 19(6): 1026-1039, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33627502

RESUMEN

Despite the availability of drugs that target ERα-positive breast cancer, resistance commonly occurs, resulting in relapse, metastasis, and death. Tamoxifen remains the most commonly-prescribed endocrine therapy worldwide, and "tamoxifen resistance" has been extensively studied. However, little consideration has been given to the role of endoxifen, the most abundant active tamoxifen metabolite detected in patients, in driving resistance mechanisms. Endoxifen functions differently from the parent drug and other primary metabolites, including 4-hydroxy-tamoxifen (4HT). Many studies have shown that patients who extensively metabolize tamoxifen into endoxifen have superior outcomes relative to patients who do not, supporting a primary role for endoxifen in driving tamoxifen responses. Therefore, "tamoxifen resistance" may be better modeled by "endoxifen resistance" for some patients. Here, we report the development of novel endoxifen-resistant breast cancer cell lines and have extensively compared these models to 4HT and fulvestrant (ICI)-resistant models. Endoxifen-resistant cells were phenotypically and molecularly distinct from 4HT-resistant cells and more closely resembled ICI-resistant cells overall. Specifically, endoxifen resistance was associated with ERα and PR loss, estrogen insensitivity, unique gene signatures, and striking resistance to most FDA-approved second- and third-line therapies. Given these findings, and the importance of endoxifen in the efficacy of tamoxifen therapy, our data indicate that endoxifen-resistant models may be more clinically relevant than existing models and suggest that a better understanding of endoxifen resistance could substantially improve patient care. IMPLICATIONS: Here we report on the development and characterization of the first endoxifen-resistant models and demonstrate that endoxifen resistance may better model tamoxifen resistance in a subset of patients.


Asunto(s)
Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Modelos Biológicos , Tamoxifeno/análogos & derivados , Antineoplásicos Hormonales/farmacología , Western Blotting/métodos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Fulvestrant/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Tamoxifeno/farmacología
10.
Acta Physiol (Oxf) ; 228(3): e13394, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31560161

RESUMEN

AIM: Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS: We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS: Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION: Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Metaboloma , Ratones , Ratones Noqueados , Estrés Oxidativo/fisiología , Condicionamiento Físico Animal/fisiología , Succinato Deshidrogenasa/metabolismo , Factores de Transcripción/genética
11.
Oncotarget ; 8(57): 96506-96521, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29228549

RESUMEN

Triple negative breast cancer (TNBC), which comprises approximately 15% of all primary breast cancer diagnoses, lacks estrogen receptor alpha, progesterone receptor and human epidermal growth factor receptor 2 expression. However, we, and others, have demonstrated that approximately 30% of TNBCs express estrogen receptor beta (ERß), a nuclear hormone receptor and potential drug target. Treatment of ERß expressing MDA-MB-231 cells with estrogen or the ERß selective agonist, LY500307, was shown to result in suppression of cell proliferation. This inhibitory effect was due to blockade of cell cycle progression. In vivo, estrogen treatment significantly repressed the growth of ERß expressing MDA-MB-231 cell line xenografts. Gene expression studies and ingenuity pathway analysis identified a network of ERß down-regulated genes involved in cell cycle progression including CDK1, cyclin B and cyclin H. siRNA mediated knockdown or drug inhibition of CDK1 and CDK7 in TNBC cells resulted in substantial decreases in proliferation regardless of ERß expression. These data suggest that the tumor suppressive effects of ERß in TNBC result from inhibition of cell cycle progression, effects that are in part mediated by suppression of CDK1/7. Furthermore, these data indicate that blockade of CDK1/7 activity in TNBC may be of therapeutic benefit, an area of study that has yet to be explored.

12.
Stem Cells Transl Med ; 6(10): 1829-1839, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28924979

RESUMEN

Human induced pluripotent stem cells (hiPSC) hold great promise in diagnostic and therapeutic applications. However, translation of hiPSC technology depends upon a means of assessing hiPSC quality that is quantitative, high-throughput, and can decipher malignant teratocarcinoma clones from normal cell lines. These attributes are lacking in current approaches such as detection of cell surface makers, RNA profiling, and/or teratoma formation assays. The latter remains the gold standard for assessing clone quality in hiPSCs, but is expensive, time-consuming, and incompatible with high-throughput platforms. Herein, we describe a novel method for determining hiPSC quality that exploits pluripotent cells' documented hypersensitivity to the topoisomerase inhibitor etoposide (CAS No. 33419-42-0). Based on a study of 115 unique hiPSC clones, we established that a half maximal effective concentration (EC50) value of <300 nM following 24 hours of exposure to etoposide demonstrated a positive correlation with RNA profiles and colony morphology metrics associated with high quality hiPSC clones. Moreover, our etoposide sensitivity assay (ESA) detected differences associated with culture maintenance, and successfully distinguished malignant from normal pluripotent clones independent of cellular morphology. Overall, the ESA provides a simple, straightforward method to establish hiPSC quality in a quantitative and functional assay capable of being incorporated into a generalized method for establishing a quality control standard for all types of pluripotent stem cells. Stem Cells Translational Medicine 2017;6:1829-1839.


Asunto(s)
Ensayo de Unidades Formadoras de Colonias/métodos , Etopósido/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Inhibidores de Topoisomerasa/farmacología , Células Cultivadas , Ensayos Clínicos como Asunto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma
13.
Stem Cell Res Ther ; 6: 50, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25890300

RESUMEN

INTRODUCTION: Stem cell therapy has emerged as potential therapeutic strategy for damaged heart muscles. Umbilical cord blood (UCB) cells are the most prevalent stem cell source available, yet have not been fully tested in cardiac regeneration. Herein, studies were performed to evaluate the cardiovascular safety and beneficial effect of mononuclear cells (MNCs) isolated from human umbilical cord blood upon intramyocardial delivery in a murine model of right ventricle (RV) heart failure due to pressure overload. METHODS: UCB-derived MNCs were delivered into the myocardium of a diseased RV cardiac model. Pulmonary artery banding (PAB) was used to produce pressure overload in athymic nude mice that were then injected intramyocardially with UCB-MNCs (0.4×10^6 cells/heart). Cardiac functions were then monitored by telemetry, echocardiography, magnetic resonance imaging (MRI) and pathologic analysis of heart samples to determine the ability for cell-based repair. RESULTS: The cardio-toxicity studies provided evidence that UCB cell transplantation has a safe therapeutic window between 0.4 to 0.8 million cells/heart without altering QT or ST-segments or the morphology of electrocardiograph waves. The PAB cohort demonstrated significant changes in RV chamber dilation and functional defects consistent with severe pressure overload. Using cardiac MRI analysis, UCB-MNC transplantation in the setting of PAB demonstrated an improvement in RV structure and function in this surgical mouse model. The RV volume load in PAB-only mice was 24.09±3.9 compared to 11.05±2.09 in the cell group (mm3, P-value<0.005). The analysis of pathogenic gene expression (BNP, ANP, Acta1, Myh7) in the cell-transplanted group showed a significant reversal with respect to the diseased PAB mice with a robust increase in cardiac progenitor gene expression such as GATA4, Kdr, Mef2c and Nkx2.5. Histological analysis indicated significant fibrosis in the RV in response to PAB that was reduced following UCB-MNC's transplantation along with concomitant increased Ki-67 expression and CD31 positive vessels as a marker of angiogenesis within the myocardium. CONCLUSIONS: These findings indicate that human UCB-derived MNCs promote an adaptive regenerative response in the right ventricle upon intramyocardial transplantation in the setting of chronic pressure overload heart failure.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Sangre Fetal/citología , Leucocitos Mononucleares/citología , Trasplante de Células Madre , Disfunción Ventricular Derecha/terapia , Función Ventricular Derecha/fisiología , Animales , Presión Sanguínea/fisiología , Regeneración Tisular Dirigida/métodos , Humanos , Imagen por Resonancia Magnética , Ratones , Ratones Desnudos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Células Madre/citología , Remodelación Ventricular/fisiología
14.
PLoS One ; 6(4): e19429, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559363

RESUMEN

Deletion of TIEG1/KLF10 in mice results in a gender specific osteopenic skeletal phenotype with significant defects in both cortical and trabecular bone, which are observed only in female animals. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display reduced expression levels of multiple bone related genes, including Runx2, and exhibit significant delays in their mineralization rates relative to wildtype controls. These data suggest that TIEG1 plays an important role in regulating Runx2 expression in bone and that decreased Runx2 expression in TIEG1 KO mice is in part responsible for the observed osteopenic phenotype. In this manuscript, data is presented demonstrating that over-expression of TIEG1 results in increased expression of Runx2 while repression of TIEG1 results in suppression of Runx2. Transient transfection and chromatin immunoprecipitation assays reveal that TIEG1 directly binds to and activates the Runx2 promoter. The zinc finger containing domain of TIEG1 is necessary for this regulation supporting that activation occurs through direct DNA binding. A role for the ubiquitin/proteasome pathway in fine tuning the regulation of Runx2 expression by TIEG1 is also implicated in this study. Additionally, the regulation of Runx2 expression by cytokines such as TGFß1 and BMP2 is shown to be inhibited in the absence of TIEG1. Co-immunoprecipitation and co-localization assays indicate that TIEG1 protein associates with Runx2 protein resulting in co-activation of Runx2 transcriptional activity. Lastly, Runx2 adenoviral infection of TIEG1 KO calvarial osteoblasts leads to increased expression of Runx2 and enhancement of their ability to differentiate and mineralize in culture. Taken together, these data implicate an important role for TIEG1 in regulating the expression and activity of Runx2 in osteoblasts and suggest that decreased expression of Runx2 in TIEG1 KO mice contributes to the observed osteopenic bone phenotype.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/fisiología , Proteínas de Unión al ADN/fisiología , Factores de Transcripción de la Respuesta de Crecimiento Precoz/fisiología , Regulación Neoplásica de la Expresión Génica , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/fisiología , Osteoblastos/metabolismo , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Línea Celular Tumoral , ADN/química , Femenino , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Osteoblastos/citología , Regiones Promotoras Genéticas , Unión Proteica , Factor de Crecimiento Transformador beta1/metabolismo
15.
Biochemistry ; 47(9): 2850-7, 2008 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-18211007

RESUMEN

The chaperone Hsp90 is required for the appropriate regulation of numerous key signaling molecules, including the progesterone receptor (PR). Many important cochaperones bind Hsp90 through their tetratricopeptide repeat (TPR) domains. Two such proteins, GCUNC45 and FKBP52, assist PR chaperoning and are thought to interact sequentially with PR-Hsp90 complexes. TPR proteins bind to the C-terminal MEEVD sequence of Hsp90, but GCUNC45 has been shown also to bind to a novel site near the N-terminus. We now show that FKBP52 is also able to bind to this site, and that these two cochaperones act competitively, through Hsp90, to modulate PR activity. The N-terminal site involves noncontiguous amino acids within or near the ATP binding pocket of Hsp90. TPR interactions at this site are thus strongly regulated by nucleotide binding and Hsp90 conformation. We propose an expanded model for client chaperoning in which the coordinated use of TPR recognition sites at both N- and C-terminal ends of Hsp90 enhances its ability to coordinate interactions with multiple TPR partners.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de Progesterona/metabolismo , Sitios de Unión , Proteínas HSP90 de Choque Térmico/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/genética , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Progesterona/química , Receptores de Progesterona/genética , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA