Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 23(2): 596-608, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38190553

RESUMEN

Reliable and comprehensive multi-omics analysis is essential for researchers to understand and explore complex biological systems more completely. Bacillus subtilis (B. subtilis) is a model organism for Gram-positive spore-forming bacteria, and in-depth insight into the physiology and molecular basis of spore formation and germination in this organism requires advanced multilayer molecular data sets generated from the same sample. In this study, we evaluated two monophasic methods for polar and nonpolar compound extraction (acetonitrile/methanol/water; isopropanol/water, and 60% ethanol) and two biphasic methods (chloroform/methanol/water, and methyl tert-butyl ether/methanol/water) on coefficients of variation of analytes, identified metabolite composition, and the quality of proteomics profiles. The 60% EtOH protocol proved to be the easiest in sample processing and was more amenable to automation. Collectively, we annotated 505 and 484 metabolites and identified 1665 and 1562 proteins in B. subtilis vegetative cells and spores, respectively. We also show differences between vegetative cells and spores from a multi-omics perspective and demonstrate that an integrative multi-omics analysis can be implemented from one sample using the 60% EtOH protocol. The results obtained by the 60% EtOH protocol provide comprehensive insight into differences in the metabolic and protein makeup of B. subtilis vegetative cells and spores.


Asunto(s)
Bacillus subtilis , Proteómica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Metanol , Agua/metabolismo , Etanol/metabolismo
2.
Antimicrob Agents Chemother ; 68(1): e0085023, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38051079

RESUMEN

Bacteria possess the ability to enter a growth-arrested state known as persistence in order to survive antibiotic exposure. Clinically, persisters are regarded as the main causative agents for chronic and recurrent infectious diseases. To combat this antibiotic-tolerant population, a better understanding of the molecular physiology of persisters is required. In this study, we collected samples at different stages of the biphasic kill curve to reveal the dynamics of the cellular molecular changes that occur in the process of persister formation. After exposure to antibiotics with different modes of action, namely, vancomycin and enrofloxacin, similar persister levels were obtained. Both shared and distinct stress responses were enriched for the respective persister populations. However, the dynamics of the presence of proteins linked to the persister phenotype throughout the biphasic kill curve and the molecular profiles in a stable persistent population did show large differences, depending on the antibiotic used. This suggests that persisters at the molecular level are highly stress specific, emphasizing the importance of characterizing persisters generated under different stress conditions. Additionally, although generated persisters exhibited cross-tolerance toward tested antibiotics, combined therapies were demonstrated to be a promising approach to reduce persister levels. In conclusion, this investigation sheds light on the stress-specific nature of persisters, highlighting the necessity of tailored treatment approaches and the potential of combined therapy.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Bacterias , Fenotipo
3.
Appl Environ Microbiol ; 90(8): e0036024, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39072650

RESUMEN

Candida albicans, an opportunistic oral pathogen, synergizes with Staphylococcus aureus, allowing bacteria to co-invade and systemically disseminate within the host. Studying human-microbe interactions creates the need for a universal culture medium that supports fungal, bacterial, and human cell culturing, while allowing sensitive analytical approaches such as OMICs and chromatography techniques. In this study, we established a fully defined, customizable adaptation of Dulbecco's modified Eagle medium (DMEM), allowing multi-kingdom culturing of S. aureus, C. albicans, and human oral cell lines, whereas minimal version of DMEM (mDMEM) did not support growth of S. aureus, and neither did supplementation with dextrose, MEM non-essential amino acids, pyruvate, and Glutamax. This new medium composition, designated as "mDMEM-DMP," promoted growth of all tested S. aureus strains. Addition of 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) further improved growth, while higher concentrations did not improve growth any further. Higher concentrations of HEPES did result in prolonged stabilization of medium pH. mDMEM-DMP promoted (hyphal) C. albicans monoculturing and co-culturing on both solid and semi-solid surfaces. In contrast to S. aureus, addition of HEPES reduced C. albicans maximum culture optical density (OD). Finally, only buffered mDMEM-DMP (100 mM HEPES) was successful in maintaining the metabolic activity of human oral Ca9-22 and HO1N1 cell lines for 24 hours. Altogether, our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions. IMPORTANCE: Interaction between microbes and the host are in the center of interest both in disease and in health. In order to study the interactions between microbes of different kingdoms and the host, alternative media are required. Synthetic media are useful as they allow addition of specific components. In addition, well-defined media are required if high-resolution analyses such as metabolomics and proteomics are desired. We describe the development of a synthetic medium to study the interactions between C. albicans, S. aureus, and human oral epithelial cells. Our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions.


Asunto(s)
Candida albicans , Medios de Cultivo , Células Epiteliales , Staphylococcus aureus , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Candida albicans/fisiología , Humanos , Staphylococcus aureus/fisiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Medios de Cultivo/química , Células Epiteliales/microbiología , Línea Celular , Boca/microbiología
4.
Microb Cell Fact ; 22(1): 200, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777723

RESUMEN

BACKGROUND: Bacillus subtilis has been established as model microorganism for fundamental research in the laboratory on protein production/secretion and sporulation and as model bacterium for controlling spoilage in the food industry. It has also been used for production of (commercial) enzymes and several secondary metabolites such as vitamins. However, this doesn't fully reflect the potential of B. subtilis as a cell-factory. Here, various strains of B. subtilis, including food-grade, spore-deficient strains and industrially used strains, were compared for their growth and metabolic potential. Industry-relevant parameters were analyzed for all strains under various aeration regimes, under anaerobic conditions, in various nutritious and nutrient-limited cultivation media, with and without organic nitrogen sources, and with and without sugar. RESULTS: Practical experiments were conducted to compare industrial relevant properties like growth rates, intracellular components and extracellular metabolite profile of different B. subtilis strains. Based on growth flexibility in different media, we found that some strains like NCIB3610 and DSM1092 are adapted to inorganic or organic nitrogen source utilization, which is highly relevant when considering a biorefinery approach using various cheap and abundant waste/sidestreams. Secondly, spore-deficient strains such as 3NA, 168 S and PY79S, showed advantages in microbial protein and acetolactate pathway expression, which is associated with applications in food industry for protein supplement and diacetyl production. Lastly, WB800 and PY79S exhibited potential for fermentative production of dipicolinic acid, 2,3-butanediol and lactic acid that could serve as precursors for biopolymers. CONCLUSION: This study demonstrates the broad potential for more extensive industrial use of Bacillus subtilis in the (bio-based) chemical industry for use of sidestreams, in the personal care industry, in the food industry for food additive production, and in the bio-sustainable industry for biofuel and bio-degradable plastic precursors production. In addition, selecting different B. subtilis strains for specific purposes makes full use of the diversity of this species and increases the potential of B. subtilis in its contribution to the bio-based economy.


Asunto(s)
Bacillus subtilis , Ingredientes Alimentarios , Bacillus subtilis/metabolismo , Fermentación , Biopolímeros , Nitrógeno/metabolismo
5.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36841229

RESUMEN

AIMS: This work aimed to characterize spore inner membrane (IM) properties and the mechanism of spore killing by wet heat and H2O2 with spores overexpressing the 2Duf protein, which is naturally encoded from a transposon found only in some Bacillus strains with much higher spore resistance than wild-type spores. METHODS AND RESULTS: Killing of Bacillus subtilis spores by wet heat or hydrogen peroxide (H2O2) was slower when 2Duf was present, and Ca-dipicolinic acid release was slower than killing. Viabilities on rich plates of wet heat- or H2O2 -treated spores +/- 2Duf were lower when NaCl was added, but higher with glucose. Addition of glucose but not Casamino acids addition increased treated spores' viability on minimal medium plates. Spores with 2Duf required higher heat activation for germination, and their germination was more wet-heat resistant than that of wild-type spores, processes that involve IM proteins. IM permeability and lipid mobility were lower in spores with 2Duf, although IM phospholipid composition was similar in spores +/- 2Duf. CONCLUSIONS: These results and previous work suggests that wet heat and H2O2 kill spores by damaging an IM enzyme or enzymes involved in oxidative phosphorylation.


Asunto(s)
Calor , Peróxido de Hidrógeno , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Bacillus subtilis/metabolismo , Esporas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Glucosa/metabolismo , Ácidos Picolínicos/metabolismo
6.
Bioinformatics ; 37(17): 2785-2786, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-33523116

RESUMEN

MOTIVATION: The gut microbiota is the human body's largest population of microorganisms that interact with human intestinal cells. They use ingested nutrients for fundamental biological processes and have important impacts on human physiology, immunity and metabolome in the gastrointestinal tract. RESULTS: Here, we present M2R, a Python add-on to cobrapy that allows incorporating information about the gut microbiota metabolism models to human genome-scale metabolic models (GEMs) like RECON3D. The idea behind the software is to modify the lower bounds of the exchange reactions in the model using aggregated in- and out-fluxes from selected microbes. M2R enables users to quickly and easily modify the pool of the metabolites that enter and leave the GEM, which is particularly important for those looking into an analysis of the metabolic interaction between the gut microbiota and human cells and its dysregulation. AVAILABILITY AND IMPLEMENTATION: M2R is freely available under an MIT License at https://github.com/e-weglarz-tomczak/m2r. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

7.
Appl Environ Microbiol ; 88(5): e0232421, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35020450

RESUMEN

Heat activation at a sublethal temperature is widely applied to promote Bacillus species spore germination. This treatment also has the potential to be employed in food processing to eliminate undesired bacterial spores by enhancing their germination and then inactivating the less-heat-resistant germinated spores at a milder temperature. However, incorrect heat treatment could also generate heat damage in spores and lead to more heterogeneous spore germination. Here, the heat activation and heat damage profile of Bacillus subtilis spores was determined by testing spore germination and outgrowth at both population and single-spore levels. The heat treatments used were 40 to 80°C and for 0 to 300 min. The results were as follows. (i) Heat activation at 40 to 70°C promoted l-valine- and l-asparagine-glucose-fructose-potassium (AGFK)-induced germination in a time-dependent manner. (ii) The optimal heat activation temperatures for AGFK and l-valine germination via the GerB plus GerK or GerA germinant receptors were 65°C and 50 to 65°C, respectively. (iii) Heat inactivation of dormant spores appeared at 70°C, and the heat damage of molecules essential for germination and growth began at 70 and 65°C, respectively. (iv) Heat treatment at 75°C resulted in both activation of germination and damage to the germination apparatus, and 80°C treatment caused more pronounced heat damage. (v) For the spores that should withstand adverse environmental temperatures in nature, heat activation seemed functional for a subsequent optimal germination process, while heat damage affected both germination and outgrowth. IMPORTANCE Bacterial spores are thermal-stress-resistant structures that can thus survive food preservation strategies and revive through the process of spore germination. The more heat resistant spores are, the more heterogeneous their germination upon the addition of germinants. Upon germination, spores can cause food spoilage and food intoxication. Here, we provide new information on both heat activation and inactivation regimes and their effects on the (heterogeneity of) spore germination.


Asunto(s)
Bacillus , Esporas Bacterianas , Bacillus subtilis/fisiología , Proteínas Bacterianas/farmacología , Calor
8.
Plasmid ; 122: 102640, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35870604

RESUMEN

Resistance plasmids mediate the rapid spread of antimicrobial resistance, which poses a threat to veterinary and human healthcare. This study addresses the question whether resistance plasmids from Escherichia coli isolated from foodstuffs always transfer unchanged to recipient E. coli cells, or that genetic editing can occur. Strains containing between one and five different plasmids were co-incubated with a standard recipient strain. Plasmids isolated from transconjugant strains were sequenced using short and long read technologies and compared to the original plasmids from the donor strains. After one hour of co-incubation only a single plasmid was transferred from donor to recipient strains. If the donor possessed several plasmids, longer co-incubation resulted in multiple plasmids being transferred. Transferred plasmids showed mutations, mostly in mobile genetic elements, in the conjugative transfer gene pilV and in genes involved in plasmid maintenance. In one transconjugant, a resistance cluster encoding tetracycline resistance was acquired by the IncI1 plasmid from the IncX1 plasmid that was also present in the donor strain, but that was not transferred. A single plasmid transferred twelve times back and forth between E. coli strains resulted in a fully conserved plasmid with no mutations, apart from repetitive rearrangements of pilV from and back to its original conformation in the donor strain. The overall outcome suggests that some genetic mutations and rearrangements can occur during plasmid transfer. The possibility of such mutations should be taken into consideration in epidemiological research aimed at attribution of resistance to specific sources.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Antibacterianos/farmacología , Conjugación Genética , Escherichia coli/genética , Transferencia de Gen Horizontal , Humanos , Carne , Plásmidos/genética
9.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328823

RESUMEN

Recent studies have suggested a major role for endospore forming bacteria within the gut microbiota, not only as pathogens but also as commensal and beneficial members contributing to gut homeostasis. In this review the sporulation processes, spore properties, and germination processes will be explained within the scope of the human gut. Within the gut, spore-forming bacteria are known to interact with the host's immune system, both in vegetative cell and spore form. Together with the resistant nature of the spore, these characteristics offer potential for spores' use as delivery vehicles for therapeutics. In the last part of the review, the therapeutic potential of spores as probiotics, vaccine vehicles, and drug delivery systems will be discussed.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Bacterias , Humanos , Intestinos , Probióticos/farmacología , Esporas Bacterianas
10.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36362401

RESUMEN

Bacillus cereus is a spore-forming human pathogen that is a burden to the food chain. Dormant spores are highly resistant to harsh environmental conditions, but lose resistance after germination. In this study, we investigate the B. cereus spore proteome upon spore germination and outgrowth so as to obtain new insights into the molecular mechanisms involved. We used mass spectrometry combined with co-expression network analysis and obtained a unique global proteome view of the germination and outgrowth processes of B. cereus spores by monitoring 2211 protein changeovers. We are the first to examine germination and outgrowth models of B. cereus spores experimentally by studying the dynamics of germinant receptors, other proteins involved in spore germination and resistance, and coat and exosporium proteins. Furthermore, through the co-expression analysis of 1175 proteins identified with high quality data, germination proteome data were clustered into eight modules (termed black, blue, brown, green, red, turquoise, grey, and yellow), whose associated functions and expression profiles were investigated. Germination related proteins were clustered into blue and brown modules, the abundances of which decreased after finishing germination. In the brown and blue we identified 124 proteins that could be vital during germination. These proteins will be very interesting to study in future genetic studies regarding their function in spore revival in B. cereus.


Asunto(s)
Bacillus cereus , Esporas Bacterianas , Humanos , Bacillus cereus/genética , Esporas Bacterianas/fisiología , Proteómica , Proteoma/metabolismo , Proteínas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA