Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Circ Res ; 119(5): 607-20, 2016 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-27354211

RESUMEN

RATIONALE: Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. OBJECTIVE: We set out to identify factors that promote arterial endothelial cell fate in vivo. METHODS AND RESULTS: We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. CONCLUSIONS: These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease.


Asunto(s)
Fibras Adrenérgicas/enzimología , Arterias/enzimología , Arterias/inervación , Endotelio Vascular/enzimología , Endotelio Vascular/inervación , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Animales , Arterias/crecimiento & desarrollo , Movimiento Celular/fisiología , Embrión de Pollo , Membrana Corioalantoides/enzimología , Membrana Corioalantoides/crecimiento & desarrollo , Membrana Corioalantoides/inervación , Coturnix , Endotelio Vascular/crecimiento & desarrollo , Activación Enzimática/fisiología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Técnicas de Cultivo de Órganos , Sistema Nervioso Periférico/enzimología , Sistema Nervioso Periférico/crecimiento & desarrollo , Trasplante de Tejidos/métodos , Arterias Umbilicales/enzimología , Arterias Umbilicales/crecimiento & desarrollo
2.
Proc Natl Acad Sci U S A ; 110(11): 4410-5, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23401498

RESUMEN

Olfactory receptors are G protein-coupled receptors that mediate olfactory chemosensation and serve as chemosensors in other tissues. We find that Olfr78, an olfactory receptor expressed in the kidney, responds to short chain fatty acids (SCFAs). Olfr78 is expressed in the renal juxtaglomerular apparatus, where it mediates renin secretion in response to SCFAs. In addition, both Olfr78 and G protein-coupled receptor 41 (Gpr41), another SCFA receptor, are expressed in smooth muscle cells of small resistance vessels. Propionate, a SCFA shown to induce vasodilation ex vivo, produces an acute hypotensive response in wild-type mice. This effect is differentially modulated by disruption of Olfr78 and Gpr41 expression. SCFAs are end products of fermentation by the gut microbiota and are absorbed into the circulation. Antibiotic treatment reduces the biomass of the gut microbiota and elevates blood pressure in Olfr78 knockout mice. We conclude that SCFAs produced by the gut microbiota modulate blood pressure via Olfr78 and Gpr41.


Asunto(s)
Presión Sanguínea/fisiología , Intestinos/microbiología , Riñón/metabolismo , Metagenoma/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Renina/metabolismo , Transducción de Señal/fisiología , Animales , Biomasa , Presión Sanguínea/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/microbiología , Mucosa Intestinal/metabolismo , Ratones , Ratones Noqueados , Propionatos/metabolismo , Propionatos/farmacología , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Transducción de Señal/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
3.
Circ Res ; 111(4): 437-45, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22723296

RESUMEN

RATIONALE: The lymphatic vasculature plays a major role in fluid homeostasis, absorption of dietary lipids, and immune surveillance. Fluid transport depends on the presence of intraluminal valves within lymphatic collectors. Defective formation of lymphatic valves leads to lymphedema, a progressive and debilitating condition for which curative treatments are currently unavailable. How lymphatic valve formation is regulated remains largely unknown. OBJECTIVE: We investigated if the repulsive axon guidance molecule Semaphorin3A (Sema3A) plays a role in lymphatic valve formation. METHODS AND RESULTS: We show that Sema3A mRNA is expressed in lymphatic vessels and that Sema3A protein binds to lymphatic valves expressing the Neuropilin-1 (Nrp1) and PlexinA1 receptors. Using mouse knockout models, we show that Sema3A is selectively required for lymphatic valve formation, via interaction with Nrp1 and PlexinA1. Sema3a(-/-) mice exhibit defects in lymphatic valve formation, which are not due to abnormal lymphatic patterning or sprouting, and mice carrying a mutation in the Sema3A binding site of Nrp1, or deficient for Plxna1, develop lymphatic valve defects similar to those seen in Sema3a(-/-) mice. CONCLUSIONS: Our data demonstrate an essential direct function of Sema3A-Nrp1-PlexinA1 signaling in lymphatic valve formation.


Asunto(s)
Vasos Linfáticos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-1/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforina-3A/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos Neutralizantes/administración & dosificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genotipo , Edad Gestacional , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Vasos Linfáticos/embriología , Ratones , Ratones Noqueados , Ratones Transgénicos , Morfogénesis , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuropilina-1/deficiencia , Neuropilina-1/genética , Neuropilina-1/inmunología , Fenotipo , ARN Mensajero/metabolismo , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Semaforina-3A/deficiencia , Semaforina-3A/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
4.
Sci Rep ; 14(1): 11749, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782985

RESUMEN

Tertiary lymphoid structures (TLS) are lymphoid organs present in inflammatory non-lymphoid tissues. Studies have linked TLS to favorable outcomes for patients with cancers or infectious diseases, but the mechanisms underlying their formation are not fully understood. In particular, secondary lymphoid organs innervation raises the question of sympathetic nerve fibers involvement in TLS organogenesis. We established a model of pulmonary inflammation based on 5 daily intranasal instillations of lipopolysaccharide (LPS) in immunocompetent mice. In this setting, lung lymphoid aggregates formed transiently, evolving toward mature TLS and disappearing when inflammation resolved. Sympathetic nerve fibers were then depleted using 6-hydroxydopamine. TLS quantification by immunohistochemistry showed a decrease in LPS-induced TLS number and surface in denervated mouse lungs. Although a reduction in alveolar space was observed, it did not impair overall pulmonary content of transcripts encoding TNF-α, IL-1ß and IFN-γ inflammation molecules whose expression was induced by LPS instillations. Immunofluorescence analysis of immune infiltrates in lungs of LPS-treated mice showed a drop in the proportion of CD23+ naive cells among CD19+ B220+ B cells in denervated mice whereas the proportion of other cell subsets remained unchanged. These data support the existence of neuroimmune crosstalk impacting lung TLS neogenesis and local naive B cell pool.


Asunto(s)
Lipopolisacáridos , Pulmón , Neumonía , Sistema Nervioso Simpático , Estructuras Linfoides Terciarias , Animales , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Ratones , Neumonía/patología , Neumonía/metabolismo , Neumonía/inmunología , Pulmón/inervación , Pulmón/patología , Pulmón/inmunología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Linfocitos B/inmunología , Masculino
5.
Elife ; 122023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095361

RESUMEN

In addition to their roles in protecting nerves and increasing conduction velocity, peripheral glia plays key functions in blood vessel development by secreting molecules governing arteries alignment and maturation with nerves. Here, we show in mice that a specific, nerve-attached cell population, derived from boundary caps (BCs), constitutes a major source of mural cells for the developing skin vasculature. Using Cre-based reporter cell tracing and single-cell transcriptomics, we show that BC derivatives migrate into the skin along the nerves, detach from them, and differentiate into pericytes and vascular smooth muscle cells. Genetic ablation of this population affects the organization of the skin vascular network. Our results reveal the heterogeneity and extended potential of the BC population in mice, which gives rise to mural cells, in addition to previously described neurons, Schwann cells, and melanocytes. Finally, our results suggest that mural specification of BC derivatives takes place before their migration along nerves to the mouse skin.


Asunto(s)
Cresta Neural , Tubo Neural , Ratones , Animales , Cresta Neural/fisiología , Neuroglía , Células de Schwann , Piel , Diferenciación Celular/fisiología
6.
J Cereb Blood Flow Metab ; 42(10): 1797-1812, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751367

RESUMEN

Brain perivascular macrophages (PVMs) are border-associated macrophages situated along blood vessels in the Virchow-Robin space and are thus found at a unique anatomical position between the endothelium and the parenchyma. Owing to their location and phagocytic capabilities, PVMs are regarded as important components that regulate various aspects of brain physiology in health and pathophysiological states. Here, we used LYVE-1 to identify PVMs in the mouse brain using brain-tissue sections and cleared whole-brains to learn about how they are distributed within the brain and across different developmental postnatal stages. We find that LYVE-1+ PVMs associate with the vasculature in different patterns and proportions depending on vessel diameter or arterio-venous differentiation. LYVE-1+ PVMs relate to blood vessels in a brain-region-dependent manner. We show that their postnatal distribution is developmentally dynamic and peaks at P10-P20 depending on the brain region. We further demonstrate that their density is reduced in the APP/PS1 mouse model of Alzheimer's Disease proportionally to beta-amyloid deposits. In conclusion, our results reveal unexpected heterogeneity and dynamics of LYVE-1+ PVMs, with selective coverage of brain vasculature, compatible with potential unexplored roles for this population of PVMs in postnatal development, and in regulating brain functions in steady-state and disease conditions.


Asunto(s)
Enfermedad de Alzheimer , Macrófagos , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/irrigación sanguínea , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Ratones
7.
Elife ; 112022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35019839

RESUMEN

Peripheral nerves are vascularized by a dense network of blood vessels to guarantee their complex function. Despite the crucial role of vascularization to ensure nerve homeostasis and regeneration, the mechanisms governing nerve invasion by blood vessels remain poorly understood. We found, in mice, that the sciatic nerve invasion by blood vessels begins around embryonic day 16 and continues until birth. Interestingly, intra-nervous blood vessel density significantly decreases during post-natal period, starting from P10. We show that, while the axon guidance molecule Netrin-1 promotes nerve invasion by blood vessels via the endothelial receptor UNC5B during embryogenesis, myelinated Schwann cells negatively control intra-nervous vascularization during post-natal period.


Asunto(s)
Neovascularización Fisiológica , Fibras Nerviosas Mielínicas/fisiología , Netrina-1/genética , Células de Schwann/fisiología , Nervio Ciático/fisiología , Animales , Movimiento Celular , Femenino , Masculino , Ratones , Neovascularización Patológica , Regeneración Nerviosa , Netrina-1/metabolismo , Nervio Ciático/crecimiento & desarrollo
8.
Circ Res ; 104(4): 428-41, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19246687

RESUMEN

The vascular system of vertebrates consists of an organized, branched network of arteries, veins, and capillaries that penetrates all the tissues of the body. One of the most striking features of the vascular system is that its branching pattern is highly stereotyped, with major and secondary branches forming at specific sites and developing highly conserved organ-specific vascular patterns. The factors controlling vascular patterning are not yet completely understood. Recent studies have highlighted the anatomic and structural similarities between blood vessels and nerves. The 2 networks are often aligned, with nerve fibers and blood vessels following parallel routes. Furthermore, both systems require precise control over their guidance and growth. Several molecules with attractive and repulsive properties have been found to modulate the proper guidance of both nerves and blood vessels. These include the Semaphorins, the Slits, and the Netrins and their receptors. In this review, we describe the molecular mechanisms by which blood vessels and axons achieve proper path finding and the molecular cues that are involved in their guidance.


Asunto(s)
Vasos Sanguíneos/metabolismo , Tipificación del Cuerpo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neovascularización Fisiológica , Sistema Nervioso/metabolismo , Transducción de Señal , Animales , Axones/metabolismo , Vasos Sanguíneos/embriología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Neovascularización Fisiológica/genética , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/embriología , Receptores de Netrina , Neuropilinas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/metabolismo , Semaforinas/metabolismo , Transducción de Señal/genética , Proteínas Roundabout
9.
Nature ; 438(7064): 94-8, 2005 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-16267555

RESUMEN

Engrailed-2 (En-2), a homeodomain transcription factor, is expressed in a caudal-to-rostral gradient in the developing midbrain, where it has an instructive role in patterning the optic tectum--the target of topographic retinal input. In addition to its well-known role in regulating gene expression through its DNA-binding domain, En-2 may also have a role in cell-cell communication, as suggested by the presence of other domains involved in nuclear export, secretion and internalization. Consistent with this possibility, here we report that an external gradient of En-2 protein strongly repels growth cones of Xenopus axons originating from the temporal retina and, conversely, attracts nasal axons. Fluorescently tagged En-2 accumulates inside growth cones within minutes of exposure, and a mutant form of the protein that cannot enter cells fails to elicit axon turning. Once internalized, En-2 stimulates the rapid phosphorylation of proteins involved in translation initiation and triggers the local synthesis of new proteins. Furthermore, the turning responses of both nasal and temporal growth cones in the presence of En-2 are blocked by inhibitors of protein synthesis. The differential guidance of nasal and temporal axons reported here suggests that En-2 may participate directly in topographic map formation in the vertebrate visual system.


Asunto(s)
Axones/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retina/embriología , Retina/metabolismo , Factores de Transcripción/metabolismo , Animales , Axones/efectos de los fármacos , Endocitosis , Femenino , Conos de Crecimiento/efectos de los fármacos , Proteínas de Homeodominio/farmacología , Proteínas del Tejido Nervioso/farmacología , Nariz/citología , Nariz/efectos de los fármacos , Nariz/inervación , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Transporte de Proteínas , Retina/citología , Retina/efectos de los fármacos , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción/farmacología , Visión Ocular/efectos de los fármacos , Visión Ocular/fisiología , Xenopus/embriología
10.
Elife ; 102021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723793

RESUMEN

Absence of the astrocyte-specific membrane protein MLC1 is responsible for megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare type of leukodystrophy characterized by early-onset macrocephaly and progressive white matter vacuolation that lead to ataxia, spasticity, and cognitive decline. During postnatal development (from P5 to P15 in the mouse), MLC1 forms a membrane complex with GlialCAM (another astrocytic transmembrane protein) at the junctions between perivascular astrocytic processes. Perivascular astrocytic processes along with blood vessels form the gliovascular unit. It was not previously known how MLC1 influences the physiology of the gliovascular unit. Here, using the Mlc1 knock-out mouse model of MLC, we demonstrated that MLC1 controls the postnatal development and organization of perivascular astrocytic processes, vascular smooth muscle cell contractility, neurovascular coupling, and intraparenchymal interstitial fluid clearance. Our data suggest that MLC is a developmental disorder of the gliovascular unit, and perivascular astrocytic processes and vascular smooth muscle cell maturation defects are primary events in the pathogenesis of MLC and therapeutic targets for this disease.


Asunto(s)
Moléculas de Adhesión Celular Neurona-Glia/genética , Quistes/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Animales , Moléculas de Adhesión Celular Neurona-Glia/metabolismo , Modelos Animales de Enfermedad , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo
11.
J Biol Chem ; 284(50): 34769-76, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19776009

RESUMEN

Focal adhesion kinase (FAK) regulates numerous cellular functions and is critical for processes ranging from embryo development to cancer progression. Although autophosphorylation on Tyr-397 appears required for FAK functions in vitro, its role in vivo has not been established. We addressed this question using a mutant mouse (fakDelta) deleted of exon 15, which encodes Tyr-397. The resulting mutant protein FAKDelta is an active kinase expressed at normal levels. Our results demonstrate that the requirement for FAK autophosphorylation varies during development. FAK(Delta/Delta) embryos developed normally up to embryonic day (E) 12.5, contrasting with the lethality at E8.5 of FAK-null embryos. Thus, autophosphorylation on Tyr-397 is not required for FAK to achieve its functions until late mid-gestation. However, FAK(Delta/Delta) embryos displayed hemorrhages, edema, delayed artery formation, vascular remodeling defects, multiple organ abnormalities, and overall developmental retardation at E13.5-14.5, and died thereafter demonstrating that FAK autophosphorylation is also necessary for normal development. Fibroblasts derived from mutant embryos had a normal stellate morphology and expression of focal adhesion proteins, Src family members, p53, and Pyk2. In contrast, in FAK(Delta/Delta) fibroblasts and endothelial cells, spreading and lamellipodia formation were altered with an increased size and number of focal adhesions, enriched in FAKDelta. FAK mutation also decreased fibroblast proliferation. These results show that the physiological functions of FAK in vivo are achieved through both autophosphorylation-independent and autophosphorylation-dependent mechanisms.


Asunto(s)
Embrión de Mamíferos/enzimología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Mutación , Animales , Biomarcadores/metabolismo , Adhesión Celular/fisiología , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/anatomía & histología , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Integrinas/genética , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación
12.
Trends Neurosci ; 30(6): 260-7, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17418905

RESUMEN

Homeogenes encode homeoprotein transcription factors that have fundamental roles in development. They are key players in genetic networks that lay out the body plan and also determine morphology and physiology at the cellular and multicellular level. However, homeoproteins share activities that extend beyond transcription, including translation regulation and signalling. For example, homeoproteins participate in the definition of territories in the neuroepithelium and also have a function in axonal guidance. Based on these examples, we propose that homeoproteins are not only morphogenetic transcription factors, but also morphogens themselves.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Morfogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Axones/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Humanos , Neuronas/citología , Neuronas/metabolismo
13.
J Neurosci Res ; 87(2): 532-44, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18803282

RESUMEN

RNA interference (RNAi) is a potent mechanism for local silencing of gene expression and can be used to study loss-of-function phenotypes in mammalian cells. We used RNAi to knockdown specifically the expression of choline acetyltransferase (ChAT), the enzyme of acetylcholine biosynthesis, both in cultured cells and in the adult brain. We first identified a 19-nucleotide sequence in the coding region of rat and mouse ChAT transcripts that constitutes a target for potent silencing of ChAT expression by RNAi. We generated a lentiviral vector that produces both a small hairpin RNA (shRNA) targeting ChAT mRNAs and the enhanced green fluorescent protein (EGFP) reporter protein to facilitate identification of transduced cells. In the cholinergic cell line NG108-15, there was at least 90% less of the ChAT protein, as measured by assaying its enzymatic activity, 3 days postinfection with this vector than in cells infected with a control vector. The vector was used to transduce cholinergic neurons in vivo and reduced ChAT expression strongly and specifically in the cholinergic neurons of the medial septum in adult rats, without affecting the expression of the vesicular acetylcholine transporter. This lentiviral vector is thus a powerful tool for specific inactivation of cholinergic neurotransmission and can therefore be used to study the role of cholinergic nuclei in the brain. This lentiviral-mediated RNAi approach will also allow the development of new animal models of diseases in which cholinergic neurotransmission is specifically altered.


Asunto(s)
Encéfalo/enzimología , Colina O-Acetiltransferasa/genética , Neuronas/enzimología , Interferencia de ARN , Transducción Genética/métodos , Animales , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Lentivirus/genética , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Transfección
14.
Med Sci (Paris) ; 35(8-9): 643-650, 2019.
Artículo en Francés | MEDLINE | ID: mdl-31532376

RESUMEN

Arterial sympathetic innervation (ASI) is a complex biological process requiring a fine axonal guidance by arteries. Its physiological impact has remained unknown for decades but recently started to be better understood and recognized. ASI is a key element of the adaptive response of the cardiovascular system to challenging situations (exposure to cold, exercise…) as ASI controls the diameter of resistance arteries, thus blood supply to organs and systemic arterial blood pressure via arterial tone modulation. Defaults in ASI can lead to diseases, acting as a main cause or as an aggravating factor. Its impact is actively studied in cardiovascular diseases representing major public health issues, like hypertension, but ASI could also play a role in aging and many more pathological processes including cancer.


TITLE: Les fonctions de l'innervation sympathique artérielle - Du développement à la pathologie. ABSTRACT: L'innervation sympathique artérielle (ISA) est un processus biologique complexe nécessitant un guidage fin des axones des neurones sympathiques par les artères. L'ISA est un élément clé de l'adaptation du système cardiovasculaire aux différentes contraintes (exposition au froid, exercice, etc.) : elle contrôle le diamètre des artères de résistance, donc le flux sanguin parvenant aux organes et la pression artérielle systémique via la modulation du tonus artériel. Son importance lors du vieillissement et dans de nombreux contextes pathologiques est de mieux en mieux reconnue et comprise. Son intégration à la prise en charge de nombreuses maladies (hypertension, cancer, etc.) permettrait d'en améliorer traitements et pronostic.


Asunto(s)
Arterias/inervación , Enfermedades Cardiovasculares/fisiopatología , Desarrollo Embrionario/fisiología , Sistema Nervioso Simpático/fisiología , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Arterias/embriología , Arterias/crecimiento & desarrollo , Arterias/patología , Axones/fisiología , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/patología , Fenómenos Fisiológicos Cardiovasculares , Sistema Cardiovascular/inervación , Sistema Cardiovascular/fisiopatología , Humanos , Sistema Nervioso Simpático/embriología , Sistema Nervioso Simpático/crecimiento & desarrollo , Sistema Nervioso Simpático/patología , Sinapsis/fisiología
15.
Mol Cell Biol ; 25(5): 1713-29, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15713629

RESUMEN

The rat tyrosine hydroxylase gene promoter contains an E-box/dyad motif and an octameric and heptameric element that may be recognized by classes of transcription factors highly expressed during nervous system development. In a one-hybrid genetic screen, we used these sites as targets to isolate cDNAs encoding new transcription factors present in the brain. We identified ZENON, a novel rat POZ protein that contains two clusters of Kruppel-like zinc fingers and that presents several features of a transcription factor. ZENON is found in nuclei following transient transfection with the cDNA. The N-terminal zinc finger cluster contains a DNA binding domain that interacts with the E box. Cotranfection experiments revealed that ZENON induces tyrosine hydroxylase promoter activity. Unlike other POZ proteins, the ZENON POZ domain is not required for either activation of transcription or self-association. In the embryonic neural tube, ZENON expression is restricted to neurons that have already achieved mitosis and are engaged in late stages of neuronal differentiation (late postmitotic neurons). ZENON neuronal expression persists in the adult brain; therefore, ZENON can be considered a marker of mature neurons. We propose that ZENON is involved in the maintenance of panneuronal features and/or in the survival of mature neurons.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Animales , Encéfalo/citología , Química Encefálica , Diferenciación Celular/fisiología , Supervivencia Celular , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Neuronas/química , Neuronas/citología , Regiones Promotoras Genéticas/genética , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Ratas , Alineación de Secuencia , Distribución Tisular , Factores de Transcripción/análisis , Factores de Transcripción/genética , Transcripción Genética/fisiología , Tirosina 3-Monooxigenasa/genética , Dedos de Zinc/genética , Dedos de Zinc/fisiología
17.
Front Psychol ; 6: 1841, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26696917

RESUMEN

Many experiments have shown that listeners actively build expectations about up-coming words, rather than simply waiting for information to accumulate. The online construction of a syntactic structure is one of the cues that listeners may use to construct strong expectations about the possible words they will be exposed to. For example, speakers of verb-final languages use pre-verbal arguments to predict on-line the kind of arguments that are likely to occur next (e.g., Kamide, 2008, for a review). Although in SVO languages information about a verb's arguments typically follows the verb, some languages use pre-verbal object pronouns, potentially allowing listeners to build on-line expectations about the nature of the upcoming verb. For instance, if a pre-verbal direct object pronoun is heard, then the following verb has to be able to enter a transitive structure, thus excluding intransitive verbs. To test this, we used French, in which object pronouns have to appear pre-verbally, to investigate whether listeners use this cue to predict the occurrence of a transitive verb. In a word detection task, we measured the number of false alarms to sentences that contained a transitive verb whose first syllable was homophonous to the target monosyllabic verb (e.g., target "dort" /dɔʁ/ to sleep and false alarm verb "dorlote" /dɔʁlɔt/ to cuddle). The crucial comparison involved two sentence types, one without a pre-verbal object clitic, for which an intransitive verb was temporarily a plausible option (e.g., "Il dorlote" / He cuddles) and the other with a pre-verbal object clitic, that made the appearance of an intransitive verb impossible ("Il le dorlote" / He cuddles it). Results showed a lower rate of false alarms for sentences with a pre-verbal object pronoun (3%) compared to locally ambiguous sentences (about 20%). Participants rapidly incorporate information about a verb's argument structure to constrain lexical access to verbs that match the expected subcategorization frame.

18.
Elife ; 42015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26651999

RESUMEN

The NG2(+) glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2(+) glia originate from the Nkx2.1(+) progenitors of the ventral telencephalon. Our analysis unravels that, beginning from E12.5 until E16.5, the NG2(+) glia populate the entire dorsal telencephalon. Interestingly, their appearance temporally coincides with the establishment of blood vessel network in the embryonic brain. NG2(+) glia are closely apposed to developing cerebral vessels by being either positioned at the sprouting tip cells or tethered along the vessel walls. Absence of NG2(+) glia drastically affects the vascular development leading to severe reduction of ramifications and connections by E18.5. By revealing a novel and fundamental role for NG2(+) glia, our study brings new perspectives to mechanisms underlying proper vessels network formation in embryonic brains.


Asunto(s)
Neovascularización Fisiológica , Neuroglía/fisiología , Telencéfalo/embriología , Animales , Femenino , Masculino , Ratones
19.
Cell Rep ; 11(11): 1786-96, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26074079

RESUMEN

The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.


Asunto(s)
Neuronas Adrenérgicas/citología , Células Endoteliales/citología , Endotelio Vascular/citología , Células-Madre Neurales/citología , Neurogénesis , Fibras Simpáticas Posganglionares/citología , Neuronas Adrenérgicas/metabolismo , Animales , Aorta/citología , Aorta/embriología , Células Endoteliales/metabolismo , Endotelio Vascular/embriología , Células-Madre Neurales/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Fibras Simpáticas Posganglionares/embriología , Pez Cebra
20.
Sci Transl Med ; 6(252): 252ps9, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186174

RESUMEN

Innervation of arteries by sympathetic nerves is well known to control blood supply to organs. Recent studies have elucidated the mechanisms that regulate the development of arterial innervation and show that in addition to vascular tone, sympathetic nerves may also influence arterial maturation and growth. Understanding sympathetic arterial innervation may lead to new approaches to treat peripheral arterial disease and hypertension.


Asunto(s)
Arterias/inervación , Crecimiento y Desarrollo , Enfermedades Vasculares/patología , Animales , Humanos , Isquemia/patología , Neovascularización Fisiológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA