RESUMEN
BACKGROUND: Cancer predisposition syndromes (CPSs) are responsible for at least 10% of cancer diagnoses in children and adolescents, most of which are not clinically recognised prior to cancer diagnosis. A variety of clinical screening guidelines are used in healthcare settings to help clinicians detect patients who have a higher likelihood of having a CPS. The McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG) is an electronic health decision support tool that uses algorithms to help clinicians determine if a child/adolescent diagnosed with cancer should be referred to genetics for a CPS evaluation. METHODS: This study assessed MIPOGG's performance in identifying Li-Fraumeni, DICER1, Constitutional mismatch repair deficiency and Gorlin (nevoid basal cell carcinoma) syndromes in a retrospective series of 84 children diagnosed with cancer and one of these four CPSs in Canadian hospitals over an 18-year period. RESULTS: MIPOGG detected 82 of 83 (98.8%) evaluable patients with any one of these four genetic conditions and demonstrated an appropriate rationale for suggesting CPS evaluation. When compared with syndrome-specific clinical screening criteria, MIPOGG's ability to correctly identify children with any of the four CPSs was equivalent to, or outperformed, existing clinical criteria respective to each CPS. CONCLUSION: This study adds evidence that MIPOGG is an appropriate tool for CPS screening in clinical practice. MIPOGG's strength is that it starts with a specific cancer diagnosis and incorporates criteria relevant for associated CPSs, making MIPOGG a more universally accessible diagnostic adjunct that does not require in-depth knowledge of each CPS.
Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Síndromes Neoplásicos Hereditarios , Niño , Humanos , Algoritmos , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/genética , Estudios RetrospectivosRESUMEN
Developmental and epileptic encephalopathy (DEE) is a group of conditions characterized by the co-occurrence of epilepsy and intellectual disability (ID), typically with developmental plateauing or regression associated with frequent epileptiform activity. The cause of DEE remains unknown in the majority of cases. We performed whole-genome sequencing (WGS) in 197 individuals with unexplained DEE and pharmaco-resistant seizures and in their unaffected parents. We focused our attention on de novo mutations (DNMs) and identified candidate genes containing such variants. We sought to identify additional subjects with DNMs in these genes by performing targeted sequencing in another series of individuals with DEE and by mining various sequencing datasets. We also performed meta-analyses to document enrichment of DNMs in candidate genes by leveraging our WGS dataset with those of several DEE and ID series. By combining these strategies, we were able to provide a causal link between DEE and the following genes: NTRK2, GABRB2, CLTC, DHDDS, NUS1, RAB11A, GABBR2, and SNAP25. Overall, we established a molecular diagnosis in 63/197 (32%) individuals in our WGS series. The main cause of DEE in these individuals was de novo point mutations (53/63 solved cases), followed by inherited mutations (6/63 solved cases) and de novo CNVs (4/63 solved cases). De novo missense variants explained a larger proportion of individuals in our series than in other series that were primarily ascertained because of ID. Moreover, these DNMs were more frequently recurrent than those identified in ID series. These observations indicate that the genetic landscape of DEE might be different from that of ID without epilepsy.
Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Mutación/genética , Niño , Preescolar , Femenino , Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Discapacidad Intelectual/genética , Masculino , Recurrencia , Convulsiones/genéticaRESUMEN
This Article was originally published under Nature Research's License to Publish, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the Article have been modified accordingly.
RESUMEN
PURPOSE: Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences. METHODS: We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms. RESULTS: IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments. CONCLUSION: This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.
Asunto(s)
Encefalopatías/genética , Factores de Intercambio de Guanina Nucleótido/genética , Discapacidad Intelectual/genética , Convulsiones/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encefalopatías/epidemiología , Encefalopatías/fisiopatología , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/fisiopatología , Masculino , Mutación , Linaje , Fenotipo , Isoformas de Proteínas/genética , Convulsiones/epidemiología , Convulsiones/fisiopatología , Caracteres SexualesRESUMEN
Between July of 2012 and December of 2014, 39 patients were enrolled prospectively to investigate the prevalence of glucose transporter 1 (GLUT1) deficiency in a ketogenic diet clinic. None of them had GLUT1 deficiency. All patients seen in the same clinic within the same period were reviewed retrospectively. A total of 18 of these 85 patients had a genetic diagnosis, including GLUT1 deficiency, pathogenic copy number variants, congenital disorder of glycosylation, neuronal ceroid lipofuscinosis type II, mitochondrial disorders, tuberous sclerosis, lissencephaly, and SCN1A-, SCN8A-, and STXBP1-associated epileptic encephalopathies. The prevalence of genetic diagnoses was 21% and prevalence of GLUT1 deficiency was 2.4% in our retrospective cohort study.
Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/complicaciones , Errores Innatos del Metabolismo de los Carbohidratos/genética , Dieta Cetogénica/métodos , Epilepsia/complicaciones , Proteínas de Transporte de Monosacáridos/deficiencia , Adolescente , Errores Innatos del Metabolismo de los Carbohidratos/dietoterapia , Errores Innatos del Metabolismo de los Carbohidratos/epidemiología , Niño , Preescolar , Estudios de Cohortes , Epilepsia/dietoterapia , Epilepsia/epidemiología , Epilepsia/genética , Femenino , Humanos , Masculino , Proteínas de Transporte de Monosacáridos/genética , PrevalenciaRESUMEN
People with Li-Fraumeni syndrome (LFS) harbor a germline pathogenic variant in the TP53 tumor suppressor gene, face a near 100% lifetime risk of cancer, and routinely undergo intensive surveillance protocols. Liquid biopsy has become an attractive tool for a range of clinical applications, including early cancer detection. Here, we provide a proof-of-principle for a multimodal liquid biopsy assay that integrates a targeted gene panel, shallow whole-genome, and cell-free methylated DNA immunoprecipitation sequencing for the early detection of cancer in a longitudinal cohort of 89 LFS patients. Multimodal analysis increased our detection rate in patients with an active cancer diagnosis over uni-modal analysis and was able to detect cancer-associated signal(s) in carriers prior to diagnosis with conventional screening (positive predictive value = 67.6%, negative predictive value = 96.5%). Although adoption of liquid biopsy into current surveillance will require further clinical validation, this study provides a framework for individuals with LFS. SIGNIFICANCE: By utilizing an integrated cell-free DNA approach, liquid biopsy shows earlier detection of cancer in patients with LFS compared with current clinical surveillance methods such as imaging. Liquid biopsy provides improved accessibility and sensitivity, complementing current clinical surveillance methods to provide better care for these patients. See related commentary by Latham et al., p. 23. This article is featured in Selected Articles from This Issue, p. 5.
Asunto(s)
Ácidos Nucleicos Libres de Células , Síndrome de Li-Fraumeni , Humanos , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patología , Proteína p53 Supresora de Tumor/genética , Detección Precoz del Cáncer , Ácidos Nucleicos Libres de Células/genética , Genes p53 , Mutación de Línea Germinal , Predisposición Genética a la EnfermedadRESUMEN
ETV6-ABL1 gene fusion is a rare genetic rearrangement in a variety of malignancies, including myeloproliferative neoplasms (MPN), acute lymphoblastic leukemia (ALL), and acute myeloid leukemia (AML). Here, we report the case of a 16-year-old male diagnosed with a MPN, 7 months post-completion of treatment for Burkitt leukaemia. RNA sequencing analysis confirmed the presence of an ETV6-ABL1 fusion transcript, with an intact, in-frame ABL tyrosine-kinase domain. Of note, secondary ETV6-ABL1-rearranged neoplastic diseases have not been reported to date. The patient was started on a tyrosine kinase inhibitor (TKI; imatinib) and, subsequently, underwent a 10/10 matched unrelated haematopoietic stem cell transplant. He is disease-free five years post-transplant. Definitive evidence of the prognostic influence of the ETV6-ABL1 fusion in haematological neoplasms is lacking; however, overall data suggest that it is a poor prognostic factor, particularly in patients with ALL and AML. The presence of this ETV6-ABL1 fusion should be more routinely investigated, especially in patients with a CML-like picture. More routine use of whole-genome and RNA sequencing analyses in clinical diagnostic care, in conjunction with conventional cytogenetics, will facilitate these investigations.
Asunto(s)
Linfoma de Burkitt , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Masculino , Humanos , Adolescente , Proteínas Tirosina Quinasas/genética , Hibridación Fluorescente in Situ , Mesilato de Imatinib/uso terapéutico , Leucemia Mieloide Aguda/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologíaRESUMEN
Li-Fraumeni syndrome (LFS) is an autosomal dominant cancer-predisposition disorder. Approximately 70% of individuals who fit the clinical definition of LFS harbor a pathogenic germline variant in the TP53 tumor suppressor gene. However, the remaining 30% of patients lack a TP53 variant and even among variant TP53 carriers, approximately 20% remain cancer-free. Understanding the variable cancer penetrance and phenotypic variability in LFS is critical to developing rational approaches to accurate, early tumor detection and risk-reduction strategies. We leveraged family-based whole-genome sequencing and DNA methylation to evaluate the germline genomes of a large, multi-institutional cohort of patients with LFS (n = 396) with variant (n = 374) or wildtype TP53 (n = 22). We identified alternative cancer-associated genetic aberrations in 8/14 wildtype TP53 carriers who developed cancer. Among variant TP53 carriers, 19/49 who developed cancer harbored a pathogenic variant in another cancer gene. Modifier variants in the WNT signaling pathway were associated with decreased cancer incidence. Furthermore, we leveraged the noncoding genome and methylome to identify inherited epimutations in genes including ASXL1, ETV6, and LEF1 that confer increased cancer risk. Using these epimutations, we built a machine learning model that can predict cancer risk in patients with LFS with an area under the receiver operator characteristic curve (AUROC) of 0.725 (0.633-0.810). Significance: Our study clarifies the genomic basis for the phenotypic variability in LFS and highlights the immense benefits of expanding genetic and epigenetic testing of patients with LFS beyond TP53. More broadly, it necessitates the dissociation of hereditary cancer syndromes as single gene disorders and emphasizes the importance of understanding these diseases in a holistic manner as opposed to through the lens of a single gene.
Asunto(s)
Síndrome de Li-Fraumeni , Humanos , Síndrome de Li-Fraumeni/genética , Proteína p53 Supresora de Tumor/genética , Predisposición Genética a la Enfermedad/genética , Genes p53 , Mutación de Línea Germinal/genéticaRESUMEN
The causes of pediatric cancers' distinctiveness compared to adult-onset tumors of the same type are not completely clear and not fully explained by their genomes. In this study, we used an optimized multilevel RNA clustering approach to derive molecular definitions for most childhood cancers. Applying this method to 13,313 transcriptomes, we constructed a pediatric cancer atlas to explore age-associated changes. Tumor entities were sometimes unexpectedly grouped due to common lineages, drivers or stemness profiles. Some established entities were divided into subgroups that predicted outcome better than current diagnostic approaches. These definitions account for inter-tumoral and intra-tumoral heterogeneity and have the potential of enabling reproducible, quantifiable diagnostics. As a whole, childhood tumors had more transcriptional diversity than adult tumors, maintaining greater expression flexibility. To apply these insights, we designed an ensemble convolutional neural network classifier. We show that this tool was able to match or clarify the diagnosis for 85% of childhood tumors in a prospective cohort. If further validated, this framework could be extended to derive molecular definitions for all cancer types.
Asunto(s)
Neoplasias , Adulto , Humanos , Niño , Neoplasias/diagnóstico , Neoplasias/genética , Transcriptoma/genética , Estudios Prospectivos , Perfilación de la Expresión Génica/métodos , Redes Neurales de la ComputaciónRESUMEN
We conducted integrative somatic-germline analyses by deeply sequencing 864 cancer-associated genes, complete genomes and transcriptomes for 300 mostly previously treated children and adolescents/young adults with cancer of poor prognosis or with rare tumors enrolled in the SickKids Cancer Sequencing (KiCS) program. Clinically actionable variants were identified in 56% of patients. Improved diagnostic accuracy led to modified management in a subset. Therapeutically targetable variants (54% of patients) were of unanticipated timing and type, with over 20% derived from the germline. Corroborating mutational signatures (SBS3/BRCAness) in patients with germline homologous recombination defects demonstrates the potential utility of PARP inhibitors. Mutational burden was significantly elevated in 9% of patients. Sequential sampling identified changes in therapeutically targetable drivers in over one-third of patients, suggesting benefit from rebiopsy for genomic analysis at the time of relapse. Comprehensive cancer genomic profiling is useful at multiple points in the care trajectory for children and adolescents/young adults with cancer, supporting its integration into early clinical management.
Asunto(s)
Neoplasias , Adulto Joven , Adolescente , Humanos , Niño , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Mutación , Genómica , Transcriptoma/genética , Recombinación HomólogaRESUMEN
PURPOSE: Diagnosis of Mismatch Repair Deficiency (MMRD) is crucial for tumor management and early detection in patients with the cancer predisposition syndrome constitutional mismatch repair deficiency (CMMRD). Current diagnostic tools are cumbersome and inconsistent both in childhood cancers and in determining germline MMRD. PATIENTS AND METHODS: We developed and analyzed a functional Low-pass Genomic Instability Characterization (LOGIC) assay to detect MMRD. The diagnostic performance of LOGIC was compared with that of current established assays including tumor mutational burden, immunohistochemistry, and the microsatellite instability panel. LOGIC was then applied to various normal tissues of patients with CMMRD with comprehensive clinical data including age of cancer presentation. RESULTS: Overall, LOGIC was 100% sensitive and specific in detecting MMRD in childhood cancers (N = 376). It was more sensitive than the microsatellite instability panel (14%, P = 4.3 × 10-12), immunohistochemistry (86%, P = 4.6 × 10-3), or tumor mutational burden (80%, P = 9.1 × 10-4). LOGIC was able to distinguish CMMRD from other cancer predisposition syndromes using blood and saliva DNA (P < .0001, n = 277). In normal cells, MMRDness scores differed between tissues (GI > blood > brain), increased over time in the same individual, and revealed genotype-phenotype associations within the mismatch repair genes. Importantly, increased MMRDness score was associated with younger age of first cancer presentation in individuals with CMMRD (P = 2.2 × 10-5). CONCLUSION: LOGIC was a robust tool for the diagnosis of MMRD in multiple cancer types and in normal tissues. LOGIC may inform therapeutic cancer decisions, provide rapid diagnosis of germline MMRD, and support tailored surveillance for individuals with CMMRD.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Síndromes Neoplásicos Hereditarios , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Reparación de la Incompatibilidad de ADN/genética , Genómica , Células Germinativas/patología , Inestabilidad de Microsatélites , Repeticiones de Microsatélite , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/genéticaRESUMEN
PURPOSE: The SickKids Cancer Sequencing (KiCS) Program, launched in 2016, evaluates the clinical utility of paired tumor/germline Next-Generation Sequencing (NGS) in pediatric oncology patients with hard-to-cure and rare cancers. In anticipation of further widespread adoption of NGS, we aimed to characterize the experiences and perspectives of adolescents and parents of patients who have already undergone NGS evaluation, focusing on the psychosocial impact and personal utility. METHODS: Parents of patients with pediatric cancer and adolescent patients who have participated in KiCS were invited to participate in semistructured interviews. Transcripts were analyzed using an inductive content analytic approach. RESULTS: Of 45 individuals invited, 22 parents and 10 adolescents were interviewed (71% response rate). Prominent psychosocial themes were low distress, relief, and sense of control; some expressed fear of the unknown. In exploring constructs of personal utility, parents highlighted hope for treatment options despite low expectations for results with clinical impact, whereas adolescents articulated altruistic motivations and less hope for personal clinical benefit. Bringing closure and answering the question of why the cancer occurred was a salient theme among both groups. Both parents and adolescents find benefit and clear decisional satisfaction with participation. No participants expressed regret. CONCLUSION: This study suggests that parents and adolescents benefit from NGS evaluation beyond the return of clinically relevant results. Our findings lay the framework for future work evaluating the value of NGS in pediatric precision oncology care through assessment of patient-reported outcomes and experiences. These results also guide provision of pre- and post-test education and support, which will facilitate patient-centered delivery of NGS practices.
Asunto(s)
Neoplasias , Adolescente , Niño , Emociones , Humanos , Oncología Médica , Neoplasias/terapia , Padres/psicología , Medicina de PrecisiónRESUMEN
IMPORTANCE: Prompt recognition of a child with a cancer predisposition syndrome (CPS) has implications for cancer management, surveillance, genetic counseling, and cascade testing of relatives. Diagnosis of CPS requires practitioner expertise, access to genetic testing, and test result interpretation. This diagnostic process is not accessible in all institutions worldwide, leading to missed CPS diagnoses. Advances in electronic health technology can facilitate CPS risk assessment. OBJECTIVE: To evaluate the diagnostic accuracy of a CPS prediction tool (McGill Interactive Pediatric OncoGenetic Guidelines [MIPOGG]) in identifying children with cancer who have a low or high likelihood of having a CPS. DESIGN, SETTING, AND PARTICIPANTS: In this international, multicenter diagnostic accuracy study, 1071 pediatric (<19 years of age) oncology patients who had a confirmed CPS (12 oncology referral centers) or who underwent germline DNA sequencing through precision medicine programs (6 centers) from January 1, 2000, to July 31, 2020, were studied. EXPOSURES: Exposures were MIPOGG application in patients with cancer and a confirmed CPS (diagnosed through routine clinical care; n = 413) in phase 1 and MIPOGG application in patients with cancer who underwent germline DNA sequencing (n = 658) in phase 2. Study phases did not overlap. Data analysts were blinded to genetic test results. MAIN OUTCOMES AND MEASURES: The performance of MIPOGG in CPS recognition was compared with that of routine clinical care, including identifying a CPS earlier than practitioners. The tool's test characteristics were calculated using next-generation germline DNA sequencing as the comparator. RESULTS: In phase 1, a total of 413 patients with cancer (median age, 3.0 years; range, 0-18 years) and a confirmed CPS were identified. MIPOGG correctly recognized 410 of 412 patients (99.5%) as requiring referral for CPS evaluation at the time of primary cancer diagnosis. Nine patients diagnosed with a CPS by a practitioner after their second malignant tumor were detected by MIPOGG using information available at the time of the first cancer. In phase 2, of 658 children with cancer (median age, 6.6 years; range, 0-18.8 years) who underwent comprehensive germline DNA sequencing, 636 had sufficient information for MIPOGG application. When compared with germline DNA sequencing for CPS detection, the MIPOGG test characteristics for pediatric-onset CPSs were as follows: sensitivity, 90.7%; specificity, 60.5%; positive predictive value, 17.6%; and negative predictive value, 98.6%. Tumor DNA sequencing data confirmed the MIPOGG recommendation for CPS evaluation in 20 of 22 patients with established cancer-CPS associations. CONCLUSIONS AND RELEVANCE: In this diagnostic study, MIPOGG exhibited a favorable accuracy profile for CPS screening and reduced time to CPS recognition. These findings suggest that MIPOGG implementation could standardize and rationalize recommendations for CPS evaluation in children with cancer.
Asunto(s)
Pruebas Genéticas , Neoplasias , Niño , Preescolar , Detección Precoz del Cáncer , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , SíndromeRESUMEN
Although replication repair deficiency, either by mismatch repair deficiency (MMRD) and/or loss of DNA polymerase proofreading, can cause hypermutation in cancer, microsatellite instability (MSI) is considered a hallmark of MMRD alone. By genome-wide analysis of tumors with germline and somatic deficiencies in replication repair, we reveal a novel association between loss of polymerase proofreading and MSI, especially when both components are lost. Analysis of indels in microsatellites (MS-indels) identified five distinct signatures (MS-sigs). MMRD MS-sigs are dominated by multibase losses, whereas mutant-polymerase MS-sigs contain primarily single-base gains. MS deletions in MMRD tumors depend on the original size of the MS and converge to a preferred length, providing mechanistic insight. Finally, we demonstrate that MS-sigs can be a powerful clinical tool for managing individuals with germline MMRD and replication repair-deficient cancers, as they can detect the replication repair deficiency in normal cells and predict their response to immunotherapy. SIGNIFICANCE: Exome- and genome-wide MSI analysis reveals novel signatures that are uniquely attributed to mismatch repair and DNA polymerase. This provides new mechanistic insight into MS maintenance and can be applied clinically for diagnosis of replication repair deficiency and immunotherapy response prediction.This article is highlighted in the In This Issue feature, p. 995.
Asunto(s)
Transformación Celular Neoplásica , Reparación de la Incompatibilidad de ADN , ADN Polimerasa Dirigida por ADN , Regulación Neoplásica de la Expresión Génica , Inestabilidad de Microsatélites , Neoplasias/genética , Humanos , Secuenciación del ExomaRESUMEN
TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading to enhanced vesicular trafficking and secretion. The mut-p53/HIF1α/miR-30d axis potentiates the release of soluble factors and the deposition and remodeling of the ECM, affecting mechano-signaling and stromal cells activation within the tumor microenvironment, thereby enhancing tumor growth and metastatic colonization.
Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica/genética , Aparato de Golgi/patología , Síndrome de Li-Fraumeni/genética , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Biopsia , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Femenino , Fibroblastos , Regulación Neoplásica de la Expresión Génica , Aparato de Golgi/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Síndrome de Li-Fraumeni/patología , Ratones , Microtúbulos/metabolismo , Microtúbulos/patología , Mutación , Cultivo Primario de Células , Vesículas Secretoras/metabolismo , Vesículas Secretoras/patología , Transducción de Señal/genética , Piel/citología , Piel/patología , Microambiente Tumoral/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Hemimegalencephaly is a hamartomatous malformation of one hemisphere. Functional hemispherectomy, the definitive treatment, is associated with significant morbidity and mortality in early infancy. Dysregulation of the mTOR pathway can result in malformations of cortical development, and mTOR inhibitors can effectively reduce seizures in tuberous sclerosis complex. We report a 6-day-old female with hemimegalencephaly and frequent seizures despite 9 antiseizure medications. At 3 months of age, while awaiting hemispherectomy, an mTOR inhibitor, rapamycin, was initiated by the neurologist. After 1 week of treatment, there was >50% reduction in seizures and total seizure burden, and after 2 weeks, development improved, resulting in deferral of surgery by 2.5 months with an increased body weight. Pathology demonstrated cortical dysplasia with upregulation of the mTOR pathway. Deep-sequencing of brain tissue demonstrated 16% mosaicism for a pathogenic de novo MTOR gene mutation. This case exemplifies how mTOR inhibitors could be considered for seizure reduction in patients with hemimegalencephaly while awaiting surgery.
Asunto(s)
Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/etiología , Hemimegalencefalia/complicaciones , Serina-Treonina Quinasas TOR/uso terapéutico , Anticonvulsivantes/uso terapéutico , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/genética , Femenino , Hemimegalencefalia/diagnóstico por imagen , Hemimegalencefalia/tratamiento farmacológico , Hemimegalencefalia/genética , Humanos , Lactante , Convulsiones/diagnóstico por imagen , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Convulsiones/genética , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genéticaRESUMEN
Sarcomas are cancers of the bone and soft tissue often defined by gene fusions. Ewing sarcoma involves fusions between EWSR1, a gene encoding an RNA binding protein, and E26 transformation-specific (ETS) transcription factors. We explored how and when EWSR1-ETS fusions arise by studying the whole genomes of Ewing sarcomas. In 52 of 124 (42%) of tumors, the fusion gene arises by a sudden burst of complex, loop-like rearrangements, a process called chromoplexy, rather than by simple reciprocal translocations. These loops always contained the disease-defining fusion at the center, but they disrupted multiple additional genes. The loops occurred preferentially in early replicating and transcriptionally active genomic regions. Similar loops forming canonical fusions were found in three other sarcoma types. Chromoplexy-generated fusions appear to be associated with an aggressive form of Ewing sarcoma. These loops arise early, giving rise to both primary and relapse Ewing sarcoma tumors, which can continue to evolve in parallel.
Asunto(s)
Neoplasias Óseas/genética , Reordenamiento Génico , Proteínas de Fusión Oncogénica/genética , Sarcoma de Ewing/genética , Neoplasias de los Tejidos Blandos/genética , Adolescente , Neoplasias Óseas/patología , Niño , Replicación del ADN , Evolución Molecular , Femenino , Genoma Humano , Humanos , Masculino , Mutación , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neoplasias de los Tejidos Blandos/patologíaRESUMEN
OBJECTIVE: To expand the clinical phenotype associated with STXBP1 gene mutations and to understand the effect of STXBP1 mutations in the pathogenesis of focal cortical dysplasia (FCD). METHODS: Patients with STXBP1 mutations were identified in various ways: as part of a retrospective cohort study of epileptic encephalopathy; through clinical referrals of individuals (10,619) with developmental delay (DD) for chromosomal microarray; and from a collection of 5,205 individuals with autism spectrum disorder (ASD) examined by whole-genome sequencing. RESULTS: Seven patients with heterozygous de novo mutations affecting the coding region of STXBP1 were newly identified. Three cases had radiologic evidence suggestive of FCD. One male patient with early infantile epileptic encephalopathy, DD, and ASD achieved complete seizure remission following resection of dysplastic brain tissue. Examination of excised brain tissue identified mosaicism for STXBP1, providing evidence for a somatic mechanism. Cell-type expression analysis suggested neuron-specific expression. A comprehensive analysis of the published data revealed that 3.1% of severe epilepsy cases carry a pathogenic de novo mutation within STXBP1. By contrast, ASD was rarely associated with mutations in this gene in our large cohorts. CONCLUSIONS: STXBP1 mutations are an important cause of epilepsy and are also rarely associated with ASD. In a case with histologically proven FCD, an STXBP1 somatic mutation was identified, suggesting a role in its etiology. Removing such tissue may be curative for STXBP1-related epilepsy.