Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(21): 10360-10365, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31072929

RESUMEN

Lipoprotein lipase (LPL) plays a central role in triglyceride (TG) metabolism. By catalyzing the hydrolysis of TGs present in TG-rich lipoproteins (TRLs), LPL facilitates TG utilization and regulates circulating TG and TRL concentrations. Until very recently, structural information for LPL was limited to homology models, presumably due to the propensity of LPL to unfold and aggregate. By coexpressing LPL with a soluble variant of its accessory protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) and with its chaperone protein lipase maturation factor 1 (LMF1), we obtained a stable and homogenous LPL/GPIHBP1 complex that was suitable for structure determination. We report here X-ray crystal structures of human LPL in complex with human GPIHBP1 at 2.5-3.0 Å resolution, including a structure with a novel inhibitor bound to LPL. Binding of the inhibitor resulted in ordering of the LPL lid and lipid-binding regions and thus enabled determination of the first crystal structure of LPL that includes these important regions of the protein. It was assumed for many years that LPL was only active as a homodimer. The structures and additional biochemical data reported here are consistent with a new report that LPL, in complex with GPIHBP1, can be active as a monomeric 1:1 complex. The crystal structures illuminate the structural basis for LPL-mediated TRL lipolysis as well as LPL stabilization and transport by GPIHBP1.


Asunto(s)
Lipoproteína Lipasa/química , Lipoproteína Lipasa/metabolismo , Receptores de Lipoproteína/química , Receptores de Lipoproteína/metabolismo , Células HEK293 , Humanos , Hidrólisis , Metabolismo de los Lípidos/fisiología , Lipólisis/fisiología , Lipoproteínas/metabolismo , Triglicéridos/metabolismo
2.
Angew Chem Int Ed Engl ; 55(52): 16026-16030, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-27874234

RESUMEN

To study the behavior of MDM2-p53 inhibitors in a disease-relevant cellular model, we have developed and validated a set of bioorthogonal probes that can be fluorescently labeled in cells and used in high-content screening assays. By using automated image analysis with single-cell resolution, we could visualize the intracellular target binding of compounds by co-localization and quantify target upregulation upon MDM2-p53 inhibition in an osteosarcoma model. Additionally, we developed a high-throughput assay to quantify target occupancy of non-tagged MDM2-p53 inhibitors by competition and to identify novel chemical matter. This approach could be expanded to other targets for lead discovery applications.


Asunto(s)
Antineoplásicos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Colorantes Fluorescentes/análisis , Indoles/farmacología , Osteosarcoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Antineoplásicos/química , Técnicas Biosensibles , Línea Celular Tumoral , Colorantes Fluorescentes/química , Humanos , Indoles/química , Modelos Moleculares , Estructura Molecular , Osteosarcoma/patología , Análisis de la Célula Individual
3.
J Biomol Screen ; 19(5): 707-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24695619

RESUMEN

For approximately a decade, biophysical methods have been used to validate positive hits selected from high-throughput screening (HTS) campaigns with the goal to verify binding interactions using label-free assays. By applying label-free readouts, screen artifacts created by compound interference and fluorescence are discovered, enabling further characterization of the hits for their target specificity and selectivity. The use of several biophysical methods to extract this type of high-content information is required to prevent the promotion of false positives to the next level of hit validation and to select the best candidates for further chemical optimization. The typical technologies applied in this arena include dynamic light scattering, turbidometry, resonance waveguide, surface plasmon resonance, differential scanning fluorimetry, mass spectrometry, and others. Each technology can provide different types of information to enable the characterization of the binding interaction. Thus, these technologies can be incorporated in a hit-validation strategy not only according to the profile of chemical matter that is desired by the medicinal chemists, but also in a manner that is in agreement with the target protein's amenability to the screening format. Here, we present the results of screening strategies using biophysics with the objective to evaluate the approaches, discuss the advantages and challenges, and summarize the benefits in reference to lead discovery. In summary, the biophysics screens presented here demonstrated various hit rates from a list of ~2000 preselected, IC50-validated hits from HTS (an IC50 is the inhibitor concentration at which 50% inhibition of activity is observed). There are several lessons learned from these biophysical screens, which will be discussed in this article.


Asunto(s)
Biofisica/métodos , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/química , Bioensayo , Diseño de Fármacos , Epigenómica , Transferencia Resonante de Energía de Fluorescencia , Fluorometría , Concentración 50 Inhibidora , Cinética , Luz , Espectroscopía de Resonancia Magnética , Peso Molecular , Nefelometría y Turbidimetría , Dispersión de Radiación , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA