Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(2): 215-227, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586412

RESUMEN

Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.


Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Humanos , Masculino , Femenino , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Fenotipo , Regulación de la Expresión Génica , Cara , Proteínas Nucleares/genética , Histona Demetilasas/genética
2.
Ann Neurol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078102

RESUMEN

OBJECTIVES: We aimed to elucidate the pathogenic mechanisms underlying autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), and to understand the genotype/phenotype correlation of structural variants (SVs) in the LMNB1 locus. BACKGROUND: Since the discovery of 3D genome architectures and topologically associating domains (TADs), new pathomechanisms have been postulated for SVs, regardless of gene dosage changes. ADLD is a rare genetic disease associated with duplications (classical ADLD) or noncoding deletions (atypical ADLD) in the LMNB1 locus. METHODS: High-throughput chromosome conformation capture, RNA sequencing, histopathological analyses of postmortem brain tissues, and clinical and neuroradiological investigations were performed. RESULTS: We collected data from >20 families worldwide carrying SVs in the LMNB1 locus and reported strong clinical variability, even among patients carrying duplications of the entire LMNB1 gene, ranging from classical and atypical ADLD to asymptomatic carriers. We showed that patients with classic ADLD always carried intra-TAD duplications, resulting in a simple gene dose gain. Atypical ADLD was caused by LMNB1 forebrain-specific misexpression due to inter-TAD deletions or duplications. The inter-TAD duplication, which extends centromerically and crosses the 2 TAD boundaries, did not cause ADLD. Our results provide evidence that astrocytes are key players in ADLD pathology. INTERPRETATION: Our study sheds light on the 3D genome and TAD structural changes associated with SVs in the LMNB1 locus, and shows that a duplication encompassing LMNB1 is not sufficient per se to diagnose ADLD, thereby strongly affecting genetic counseling. Our study supports breaking TADs as an emerging pathogenic mechanism that should be considered when studying brain diseases. ANN NEUROL 2024.

3.
Brain ; 147(5): 1887-1898, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38193360

RESUMEN

RFC1 disease, caused by biallelic repeat expansion in RFC1, is clinically heterogeneous in terms of age of onset, disease progression and phenotype. We investigated the role of the repeat size in influencing clinical variables in RFC1 disease. We also assessed the presence and role of meiotic and somatic instability of the repeat. In this study, we identified 553 patients carrying biallelic RFC1 expansions and measured the repeat expansion size in 392 cases. Pearson's coefficient was calculated to assess the correlation between the repeat size and age at disease onset. A Cox model with robust cluster standard errors was adopted to describe the effect of repeat size on age at disease onset, on age at onset of each individual symptoms, and on disease progression. A quasi-Poisson regression model was used to analyse the relationship between phenotype and repeat size. We performed multivariate linear regression to assess the association of the repeat size with the degree of cerebellar atrophy. Meiotic stability was assessed by Southern blotting on first-degree relatives of 27 probands. Finally, somatic instability was investigated by optical genome mapping on cerebellar and frontal cortex and unaffected peripheral tissue from four post-mortem cases. A larger repeat size of both smaller and larger allele was associated with an earlier age at neurological onset [smaller allele hazard ratio (HR) = 2.06, P < 0.001; larger allele HR = 1.53, P < 0.001] and with a higher hazard of developing disabling symptoms, such as dysarthria or dysphagia (smaller allele HR = 3.40, P < 0.001; larger allele HR = 1.71, P = 0.002) or loss of independent walking (smaller allele HR = 2.78, P < 0.001; larger allele HR = 1.60; P < 0.001) earlier in disease course. Patients with more complex phenotypes carried larger expansions [smaller allele: complex neuropathy rate ratio (RR) = 1.30, P = 0.003; cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) RR = 1.34, P < 0.001; larger allele: complex neuropathy RR = 1.33, P = 0.008; CANVAS RR = 1.31, P = 0.009]. Furthermore, larger repeat expansions in the smaller allele were associated with more pronounced cerebellar vermis atrophy (lobules I-V ß = -1.06, P < 0.001; lobules VI-VII ß = -0.34, P = 0.005). The repeat did not show significant instability during vertical transmission and across different tissues and brain regions. RFC1 repeat size, particularly of the smaller allele, is one of the determinants of variability in RFC1 disease and represents a key prognostic factor to predict disease onset, phenotype and severity. Assessing the repeat size is warranted as part of the diagnostic test for RFC1 expansion.


Asunto(s)
Edad de Inicio , Proteína de Replicación C , Humanos , Masculino , Femenino , Proteína de Replicación C/genética , Adulto , Expansión de las Repeticiones de ADN/genética , Persona de Mediana Edad , Adulto Joven , Adolescente , Niño , Fenotipo , Índice de Severidad de la Enfermedad , Preescolar , Progresión de la Enfermedad
4.
Am J Med Genet C Semin Med Genet ; : e32089, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884529

RESUMEN

Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.

5.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38787418

RESUMEN

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Asunto(s)
Metilación de ADN , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Masculino , Femenino , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Niño
6.
Am J Hum Genet ; 108(5): 857-873, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33961779

RESUMEN

The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Riñón Fusionado/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Adolescente , Secuencia de Aminoácidos , Animales , Encefalopatías/etiología , Niño , Preescolar , Epilepsia/complicaciones , Evolución Molecular , Femenino , Frecuencia de los Genes , Humanos , Lactante , Masculino , Ratones , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/deficiencia , Fenotipo , Estabilidad Proteica , Síndrome , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética , Adulto Joven , Pez Cebra/genética
7.
Genet Med ; 26(3): 101041, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054406

RESUMEN

PURPOSE: The main objective of this study was to assess clinical features and genome-wide DNA methylation profiles in individuals affected by intellectual developmental disorder, autosomal dominant 21 (IDD21) syndrome, caused by variants in the CCCTC-binding factor (CTCF) gene. METHODS: DNA samples were extracted from peripheral blood of 16 individuals with clinical features and genetic findings consistent with IDD21. DNA methylation analysis was performed using the Illumina Infinium Methylation EPIC Bead Chip microarrays. The methylation levels were fitted in a multivariate linear regression model to identify the differentially methylated probes. A binary support vector machine classification model was constructed to differentiate IDD21 samples from controls. RESULTS: We identified a highly specific, reproducible, and sensitive episignature associated with CTCF variants. Six variants of uncertain significance were tested, of which 2 mapped to the IDD21 episignature and clustered alongside IDD21 cases in both heatmap and multidimensional scaling plots. Comparison of the genomic DNA methylation profile of IDD21 with that of 56 other neurodevelopmental disorders provided insights into the underlying molecular pathophysiology of this disorder. CONCLUSION: The robust and specific CTCF/IDD21 episignature expands the growing list of neurodevelopmental disorders with distinct DNA methylation profiles, which can be applied as supporting evidence in variant classification.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Discapacidades del Desarrollo/genética , Metilación de ADN/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Síndrome
8.
Brain ; 146(2): 534-548, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35979925

RESUMEN

We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Células Madre Pluripotentes Inducidas , Trastornos del Desarrollo del Lenguaje , Trastornos del Neurodesarrollo , Animales , Ratones , Humanos , Trastorno del Espectro Autista/genética , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/genética , Proteínas/genética , Proteínas de Ciclo Celular/genética
9.
Neurol Sci ; 45(6): 2877-2880, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494459

RESUMEN

BACKGROUND: Spinocerebellar ataxia 17 (SCA17) is a rare autosomal dominant form of inherited ataxia, caused by heterozygous trinucleotide repeat expansions encoding glutamine in the TATA box-binding protein (TBP) gene. CASE DESCRIPTION: We describe the clinical history, neuropsychological, and neuroimaging findings of a 42-year-old patient who presented for medical attention showing prevalent behavioral and cognitive problems along with progressively worsening gait disturbances. The patient's family history indicated the presence of SCA17 in the maternal lineage. Genetic analysis confirmed a heterozygous 52-CAG pathological expansion repeat in TBP (normal interval, 25-40 CAG. Brain 18-fluorodeoxyglucose positron emission tomography (FDG-PET) showed bilateral hypometabolism in the sensorimotor cortex, with a slight predominance on the right, as well as in the striatal nuclei and thalamic hypermetabolism, a finding similar to what is observed in Huntington's disease. The patient also underwent neuropsychological evaluation, which revealed mild cognitive impairment and difficulties in social interaction and understanding other's emotions (Faux Pas Test and Reading the Mind in the Eyes Test). CONCLUSION: Our report emphasizes the importance of considering SCA17 as a possible diagnosis in patients with a prevalent progressive cognitive and behavioral disorders, even with a pattern of FDG-PET hypometabolism not primarily indicative of this disease.


Asunto(s)
Disfunción Cognitiva , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Ataxias Espinocerebelosas , Adulto , Humanos , Encéfalo/diagnóstico por imagen , Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/genética , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/etiología , Pruebas Neuropsicológicas , Trastorno de la Conducta Social/diagnóstico por imagen , Trastorno de la Conducta Social/etiología , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/genética , Proteína de Unión a TATA-Box/genética
10.
J Med Genet ; 60(9): 866-873, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36977548

RESUMEN

BACKGROUND: Titin truncating variants (TTNtvs) have been associated with several forms of myopathies and/or cardiomyopathies. In homozygosity or in compound heterozygosity, they cause a wide spectrum of recessive phenotypes with a congenital or childhood onset. Most recessive phenotypes showing a congenital or childhood onset have been described in subjects carrying biallelic TTNtv in specific exons. Often karyotype or chromosomal microarray analyses are the only tests performed when prenatal anomalies are identified. Thereby, many cases caused by TTN defects might be missed in the diagnostic evaluations. In this study, we aimed to dissect the most severe end of the titinopathies spectrum. METHODS: We performed a retrospective study analysing an international cohort of 93 published and 10 unpublished cases carrying biallelic TTNtv. RESULTS: We identified recurrent clinical features showing a significant correlation with the genotype, including fetal akinesia (up to 62%), arthrogryposis (up to 85%), facial dysmorphisms (up to 73%), joint (up to 17%), bone (up to 22%) and heart anomalies (up to 27%) resembling complex, syndromic phenotypes. CONCLUSION: We suggest TTN to be carefully evaluated in any diagnostic process involving patients with these prenatal signs. This step will be essential to improve diagnostic performance, expand our knowledge and optimise prenatal genetic counselling.


Asunto(s)
Aborto Habitual , Conectina , Músculo Esquelético , Miocardio , Femenino , Humanos , Embarazo , Aborto Habitual/genética , Conectina/genética , Estudios Retrospectivos , Músculo Esquelético/anomalías
11.
Am J Med Genet C Semin Med Genet ; 193(2): 160-166, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36734411

RESUMEN

Gain of function pathogenic variants in MRAS have been found in a small subset of pediatric subjects presenting with Noonan syndrome (NS) associated with hypertrophic cardiomyopathy (HCM) and moderate to severe intellectual disability. These variants are considered to confer a high-risk for the development of severe HCM with poor prognosis and fatal outcome. We report on the natural history of the first adult subject with NS carrying the recurrent pathogenic p.Thr68Ile amino acid substitution. Different from what had previously been observed, he presented with a mild, late-onset left ventricular hypertrophy, and a constellation of additional symptoms rarely seen in NS. The present case provides evidence that HCM does not represent an obligatory, early-onset and severe complication in subjects with MRAS variants. It also adds new data about late-onset features suggesting that other unexpected complications might be observed in adult subjects providing anticipatory guidance for individuals of all age.


Asunto(s)
Cardiomiopatía Hipertrófica , Síndrome de Noonan , Masculino , Niño , Humanos , Adulto , Síndrome de Noonan/complicaciones , Síndrome de Noonan/genética , Síndrome de Noonan/diagnóstico , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/complicaciones , Cardiomiopatía Hipertrófica/genética , Sustitución de Aminoácidos , Mutación , Fenotipo , Proteínas ras/genética
12.
Hum Genet ; 142(8): 1055-1076, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37199746

RESUMEN

Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.


Asunto(s)
Ataxias Espinocerebelosas , Animales , Ratones , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ataxia , Elongasas de Ácidos Grasos/genética , Secuencia de Aminoácidos , Mutación
13.
Genet Med ; 25(11): 100922, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37403762

RESUMEN

PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Animales , Humanos , Ratas , Trastorno del Espectro Autista/genética , Epilepsia/genética , Mutación Missense/genética , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Rabfilina-3A
14.
Genet Med ; 25(8): 100871, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37120726

RESUMEN

PURPOSE: HNRNPU haploinsufficiency is associated with developmental and epileptic encephalopathy 54. This neurodevelopmental disorder is characterized by developmental delay, intellectual disability, speech impairment, and early-onset epilepsy. We performed genome-wide DNA methylation (DNAm) analysis in a cohort of individuals to develop a diagnostic biomarker and gain functional insights into the molecular pathophysiology of HNRNPU-related disorder. METHODS: DNAm profiles of individuals carrying pathogenic HNRNPU variants, identified through an international multicenter collaboration, were assessed using Infinium Methylation EPIC arrays. Statistical and functional correlation analyses were performed comparing the HNRNPU cohort with 56 previously reported DNAm episignatures. RESULTS: A robust and reproducible DNAm episignature and global DNAm profile were identified. Correlation analysis identified partial overlap and similarity of the global HNRNPU DNAm profile to several other rare disorders. CONCLUSION: This study demonstrates new evidence of a specific and sensitive DNAm episignature associated with pathogenic heterozygous HNRNPU variants, establishing its utility as a clinical biomarker for the expansion of the EpiSign diagnostic test.


Asunto(s)
Metilación de ADN , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Epigenómica , Fenotipo , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Biomarcadores
15.
Ann Neurol ; 92(1): 122-137, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35411967

RESUMEN

OBJECTIVE: Dominant spinocerebellar ataxias (SCA) are characterized by genetic heterogeneity. Some mapped and named loci remain without a causal gene identified. Here we applied next generation sequencing (NGS) to uncover the genetic etiology of the SCA25 locus. METHODS: Whole-exome and whole-genome sequencing were performed in families linked to SCA25, including the French family in which the SCA25 locus was originally mapped. Whole exome sequence data were interrogated in a cohort of 796 ataxia patients of unknown etiology. RESULTS: The SCA25 phenotype spans a slowly evolving sensory and cerebellar ataxia, in most cases attributed to ganglionopathy. A pathogenic variant causing exon skipping was identified in the gene encoding Polyribonucleotide Nucleotidyltransferase PNPase 1 (PNPT1) located in the SCA25 linkage interval. A second splice variant in PNPT1 was detected in a large Australian family with a dominant ataxia also mapping to SCA25. An additional nonsense variant was detected in an unrelated individual with ataxia. Both nonsense and splice heterozygous variants result in premature stop codons, all located in the S1-domain of PNPase. In addition, an elevated type I interferon response was observed in blood from all affected heterozygous carriers tested. PNPase notably prevents the abnormal accumulation of double-stranded mtRNAs in the mitochondria and leakage into the cytoplasm, associated with triggering a type I interferon response. INTERPRETATION: This study identifies PNPT1 as a new SCA gene, responsible for SCA25, and highlights biological links between alterations of mtRNA trafficking, interferonopathies and ataxia. ANN NEUROL 2022;92:122-137.


Asunto(s)
Ataxia Cerebelosa , Interferón Tipo I , Ataxias Espinocerebelosas , Ataxia , Australia , Exorribonucleasas , Francia , Humanos , Interferón Tipo I/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
16.
Brain ; 145(1): 208-223, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34382076

RESUMEN

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.


Asunto(s)
Transferasas Alquil y Aril , Mioclonía , Enfermedades Neurodegenerativas , Retinitis Pigmentosa , Niño , Dolicoles/metabolismo , Humanos , Enfermedades Neurodegenerativas/genética , Retinitis Pigmentosa/genética
17.
J Med Genet ; 59(2): 170-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33323470

RESUMEN

INTRODUCTION: The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in TLK2 were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies. METHODS: We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders. Using spatial proteomics (BioID) and single-cell gel electrophoresis, we investigated the proximity interaction landscape of TLK2 and analysed the effects of p.(Asp551Gly) and a previously reported missense variant (c.1850C>T; p.(Ser617Leu)) on TLK2 interactions, localisation and activity. RESULTS: We identified three new unrelated MRD57 families. Two were sporadic and caused by a missense change (c.1652A>G; p.(Asp551Gly)) or a 39 kb deletion encompassing TLK2, and one was familial with three affected siblings who inherited a nonsense change from an affected mother (c.1423G>T; p.(Glu475Ter)). The clinical phenotypes were consistent with those of previously reported cases. The tested mutations strongly impaired TLK2 kinase activity. Proximal interactions between TLK2 and other factors implicated in neurological disorders, including CHD7, CHD8, BRD4 and NACC1, were identified. Finally, we demonstrated a more relaxed chromatin state in lymphoblastoid cells harbouring the p.(Asp551Gly) variant compared with control cells, conferring susceptibility to DNA damage. CONCLUSION: Our study identified novel TLK2 pathogenic variants, confirming and further expanding the MRD57-related phenotype. The molecular characterisation of missense variants increases our knowledge about TLK2 function and provides new insights into its role in neurodevelopmental disorders.


Asunto(s)
Cromatina/metabolismo , Trastornos del Neurodesarrollo/genética , Proteínas Quinasas/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Metaboloma , Persona de Mediana Edad , Mutación , Mutación Missense , Trastornos del Neurodesarrollo/enzimología , Linaje , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Secuenciación del Exoma , Adulto Joven
18.
Genes Chromosomes Cancer ; 61(12): 740-746, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35999193

RESUMEN

Cutaneous skeletal hypophosphatemia syndrome (CSHS) is caused by somatic mosaic NRAS variants and characterized by melanocytic/sebaceous naevi, eye, and brain malformations, and FGF23-mediated hypophosphatemic rickets. The MEK inhibitor Trametinib, acting on the RAS/MAPK pathway, is a candidate for CSHS therapy. A 4-year-old boy with seborrheic nevus, eye choristoma, multiple hamartomas, brain malformation, pleural lymphangioma and chylothorax developed severe hypophosphatemic rickets unresponsive to phosphate supplementation. The c.182A > G;p.(Gln61Arg) somatic NRAS variant found in DNA from nevus biopsy allowed diagnosing CSHS. We administered Trametinib for 15 months investigating the transcriptional effects at different time points by whole blood RNA-seq. Treatment resulted in prompt normalization of phosphatemia and phosphaturia, catch-up growth, chylothorax regression, improvement of bone mineral density, reduction of epidermal nevus and hamartomas. Global RNA sequencing on peripheral blood mononucleate cells showed transcriptional changes under MEK inhibition consisting in a strong sustained downregulation of signatures related to RAS/MAPK, PI3 kinase, WNT and YAP/TAZ pathways, reverting previously defined transcriptomic signatures. CSHS was effectively treated with a MEK inhibitor with almost complete recovery of rickets and partial regression of the phenotype. We identified "core" genes modulated by MEK inhibition potentially serving as surrogate markers of Trametinib action.


Asunto(s)
Quilotórax , Hamartoma , Hipofosfatemia , Nevo Pigmentado , Nevo , Raquitismo Hipofosfatémico , Neoplasias Cutáneas , ADN , GTP Fosfohidrolasas/genética , Humanos , Hipofosfatemia/diagnóstico , Hipofosfatemia/genética , Proteínas de la Membrana/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos , Nevo Pigmentado/diagnóstico , Nevo Pigmentado/genética , Nevo Pigmentado/metabolismo , Fosfatos , Fosfatidilinositol 3-Quinasas , Raquitismo Hipofosfatémico/genética , Neoplasias Cutáneas/genética , Síndrome
19.
Hum Mutat ; 43(9): 1299-1313, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35607920

RESUMEN

Alternative splicing (AS) is crucial for cell-type-specific gene transcription and plays a critical role in neuronal differentiation and synaptic plasticity. De novo frameshift variants in NOVA2, encoding a neuron-specific key splicing factor, have been recently associated with a new neurodevelopmental disorder (NDD) with hypotonia, neurological features, and brain abnormalities. We investigated eight unrelated individuals by exome sequencing (ES) and identified seven novel pathogenic NOVA2 variants, including two with a novel localization at the KH1 and KH3 domains. In addition to a severe NDD phenotype, novel clinical features included psychomotor regression, attention deficit-hyperactivity disorder (ADHD), dyspraxia, and urogenital and endocrinological manifestations. To test the effect of the variants on splicing regulation, we transfected HeLa cells with wildtype and mutant NOVA2 complementary DNA (cDNA). The novel variants NM_002516.4:c.754_756delCTGinsTT p.(Leu252Phefs*144) and c.1329dup p.(Lys444Glnfs*82) all negatively affected AS events. The distal p.(Lys444Glnfs*82) variant, causing a partial removal of the KH3 domain, had a milder functional effect leading to an intermediate phenotype. Our findings expand the molecular and phenotypic spectrum of NOVA2-related NDD, supporting the pathogenic role of AS disruption by truncating variants and suggesting that this is a heterogeneous condition with variable clinical course.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Empalme Alternativo , Células HeLa , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Hipotonía Muscular/genética , Proteínas del Tejido Nervioso/genética , Antígeno Ventral Neuro-Oncológico , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteínas de Unión al ARN/genética
20.
Genet Med ; 24(1): 29-40, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906452

RESUMEN

PURPOSE: This study aimed to unravel the genetic factors underlying missing heritability in spinocerebellar ataxia type 17 (SCA17) caused by polyglutamine-encoding CAG/CAA repeat expansions in the TBP gene. Alleles with >49 CAG/CAA repeats are fully penetrant. Most patients, however, carry intermediate TBP41-49 alleles that show incomplete penetrance. METHODS: Using next-generation sequencing approaches, we investigated 40 SCA17/TBP41-54 index patients, their affected (n = 55) and unaffected (n = 51) relatives, and a cohort of patients with ataxia (n = 292). RESULTS: All except 1 (30/31) of the index cases with TBP41-46 alleles carried a heterozygous pathogenic variant in the STUB1 gene associated with spinocerebellar ataxias SCAR16 (autosomal recessive) and SCA48 (autosomal dominant). No STUB1 variant was found in patients carrying TBP47-54 alleles. TBP41-46 expansions and STUB1 variants cosegregate in all affected family members, whereas the presence of either TBP41-46 expansions or STUB1 variants individually was never associated with the disease. CONCLUSION: Our data reveal an unexpected genetic interaction between STUB1 and TBP in the pathogenesis of SCA17 and raise questions on the existence of SCA48 as a monogenic disease with crucial implications for diagnosis and counseling. They provide a convincing explanation for the incomplete penetrance of intermediate TBP alleles and demonstrate a dual inheritance pattern for SCA17, which is a monogenic dominant disorder for TBP≥47 alleles and a digenic TBP/STUB1 disease (SCA17-DI) for intermediate expansions.


Asunto(s)
Péptidos , Ataxias Espinocerebelosas , Proteína de Unión a TATA-Box , Ubiquitina-Proteína Ligasas , Humanos , Penetrancia , Péptidos/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Proteína de Unión a TATA-Box/genética , Expansión de Repetición de Trinucleótido/genética , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA