Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Histochem Cell Biol ; 153(6): 397-412, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32157392

RESUMEN

The primary function of ovarian granulosa cells (GCs) is the support of oocytes during maturation and development. Molecular analyses of granulosa cell-associated processes, leading to improvement of understanding of the cell cycle events during the formation of ovarian follicles (folliculogenesis), may be key to improve the in vitro fertilization procedures. Primary in vitro culture of porcine GCs was employed to examine the changes in the transcriptomic profile of genes belonging to "cell cycle", "cell division", "cell cycle process", "cell cycle phase transition", "cell cycle G1/S phase transition", "cell cycle G2/M phase transition" and "cell cycle checkpoint" ontology groups. During the analysis, microarrays were employed to study the transcriptome of GCs, analyzing the total RNA of cells from specific periods of in vitro cultures. This research was based on material obtained from 40 landrace gilts of similar weight, age and the same living conditions. RNA was isolated at specific timeframes: before the culture was established (0 h) and after 48 h, 96 h and 144 h in vitro. Out of 133 differentially expressed genes, we chose the 10 most up-regulated (SFRP2, PDPN, PDE3A, FGFR2, PLK2, THBS1, ETS1, LIF, ANXA1, TGFB1) and the 10 most downregulated (IGF1, NCAPD2, CABLES1, H1FOO, NEK2, PPAT, TXNIP, NUP210, RGS2 and CCNE2). Some of these genes known to play key roles in the regulation of correct cell cycle passage (up-regulated SFRP2, PDE3A, PLK2, LIF and down-regulated CCNE2, TXNIP, NEK2). The data obtained provide a potential reference for studies on the process of mammalian folliculogenesis, as well as suggests possible new genetic markers for cell cycle progress in in vitro cultured porcine granulosa cells.


Asunto(s)
Ciclo Celular/genética , Células de la Granulosa/citología , Folículo Ovárico/citología , Transcriptoma , Animales , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Porcinos
2.
Histochem Cell Biol ; 151(2): 125-143, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30382374

RESUMEN

The human ovarian granulosa cells (GCs) surround the oocyte and form the proper architecture of the ovarian follicle. The ability of GCs to proliferate and differentiate in the conditions of in vitro culture has been proven. However, there is still a large field for extensive investigation of molecular basics, as well as marker genes, responsible for these processes. This study aimed to find the new marker genes, encoding proteins that regulate human GCs in vitro capability for proliferation and differentiation during long-term primary culture. The human follicular GCs were collected from hyper-stimulated ovarian follicles during IVF procedures and transferred to a long-term in vitro culture. The culture lasted for 30 days, with RNA samples isolated at days 1, 7, 15, 30. Transcriptomic analysis was then performed with the use of Affymetrix microarray. Obtained results were then subjected to bioinformatical evaluation and sorting. After subjecting the datasets to KEGG analysis, three differentially expressed ontology groups "cell differentiation" (GO:0030154), "cell proliferation" (GO:0008283) and "cell-cell junction organization" (GO:0045216) were chosen for further investigation. All three of those ontology groups are involved in human GCs' in vitro lifespan, proliferation potential, and survival capability. Changes in expression of genes of interest belonging to the chosen GOs were validated with the use of RT-qPCR. In this manuscript, we suggest that VCL, PARVA, FZD2, NCS1, and COL5A1 may be recognized as new markers of GC in vitro differentiation, while KAT2B may be a new marker of their proliferation. Additionally, SKI, GLI2, FERMT2, and CDH2 could also be involved in GC in vitro proliferation and differentiation processes. We demonstrated that, in long-term in vitro culture, GCs exhibit markers that suggest their ability to differentiate into different cells types. Therefore, the higher expression profile of these genes may also be associated with the induction of cellular differentiation processes that take place beyond the long-term primary in vitro culture.


Asunto(s)
Uniones Adherentes/metabolismo , Adhesión Celular/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Células de la Granulosa/metabolismo , Ovario/citología , Regulación hacia Arriba , Adolescente , Adulto , Células Cultivadas , Femenino , Células de la Granulosa/citología , Humanos , Adulto Joven
3.
Int J Mol Sci ; 20(19)2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31581653

RESUMEN

Coronary artery bypass grafting (CABG) is one of the most efficient procedures for patients with advanced coronary artery disease. From all the blood vessels with the potential to be used in this procedure, the internal thoracic artery (ITA) and the saphenous vein (SV) are the most commonly applied as aortocoronary conduits. Nevertheless, in order to evaluate the graft patency and efficiency effectively, basic knowledge should be constantly expanding at the molecular level as well, as the understanding of predictive factors is still limited. In this study, we have employed the expressive microarray approach, validated with Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), to analyze the transcriptome of both venous and arterial grafts. Searching for potential molecular factors, we analyzed differentially expressed gene ontologies involved in bone development and morphogenesis, for the possibility of discovery of new markers for the evaluation of ITA and SV segment quality. Among three ontological groups of interest-"endochondral bone morphogenesis", "ossification", and "skeletal system development"-we found six genes common to all of them. BMP6, SHOX2, COL13A1, CSGALNACT1, RUNX2, and STC1 showed differential expression patterns in both analyzed vessels. STC1 and COL13A1 were upregulated in ITA samples, whereas others were upregulated in SV. With regard to the Runx2 protein function in osteogenic phenotype regulation, the RUNX2 gene seems to be of paramount importance in assessing the potential of ITA, SV, and other vessels used in the CABG procedure. Overall, the presented study provided valuable insight into the molecular background of conduit characterization, and thus indicated genes that may be the target of subsequent studies, also at the protein level. Moreover, it has been suggested that RUNX2 may be recognized as a molecular marker of osteogenic changes in human blood vessels.


Asunto(s)
Aorta Torácica/metabolismo , Desarrollo Óseo/genética , Puente de Arteria Coronaria , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Vena Safena/metabolismo , Biomarcadores , Biología Computacional/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos
4.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443152

RESUMEN

Nowadays, science has a lot of knowledge about the physiology of ovarian processes, especially folliculogenesis, hormone production and ovulation. However, the molecular basis for these processes remains largely undiscovered. The cell layer surrounding the growing oocyte-granulosa cells-are characterized by high physiological capabilities (e.g., proliferation, differentiation) and potential for growth in primary cultures, which predisposes them for analysis in the context of possible application of their cultures in advanced methods of assisted reproduction. In this study, we have used standard molecular approaches to analyze markers of these processes in primarily in vitro cultured porcine granulosa, subjected to conditions usually applied to cultures of similar cells. The material for our research came from commercially slaughtered pigs. The cells were obtained by enzymatic digestion of tissues and in vitro culture in appropriate conditions. The obtained genetic material (RNA) was collected at specific time intervals (0 h-before culture; reference, 48, 98, 144 h) and then analyzed using expression microarrays. Genes that showed a fold change greater than |2| and an adjusted p value lower than 0.05 were described as differentially expressed. Three groups of genes: "Cell morphogenesis", "cell differentiation" and "cell development" were analyzed. From 265 differently expressed genes that belong to chosen ontology groups we have selected DAPL1, CXCL10, NEBL, IHH, TGFBR3, SCUBE1, DAB1, ITM2A, MCOLN3, IGF1 which are most downregulated and PDPN, CAV1, TMOD1, TAGLN, IGFBP5, ITGB3, LAMB1, FN1, ITGA2, POSTN genes whose expression is upregulated through the time of culture, on which we focused in downstream analysis. The results were also validated using RT-qPCR. The aim of our work was to conduct primary in vitro culture of granulosa cells, as well as to analyze the expression of gene groups in relation to the proliferation of follicular granulosa cells in the model of primary culture in real time. This knowledge should provide us with a molecular insight into the processes occurring during the in vitro cultures of porcine granulosa cells, serving as a basic molecular entry on the extent of the loss of their physiological properties, as well as gain of new, culture-specific traits.


Asunto(s)
Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Femenino , Morfogénesis/genética , Morfogénesis/fisiología , Porcinos , Transcriptoma/genética
5.
Int J Mol Sci ; 20(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067669

RESUMEN

This paper aims to identify and describe new genetic markers involved in the processes of protein expression and modification reflected in the change of mitochondrial activity before and after in vitro maturation of the oocyte. Porcine oocytes collected from the ovaries of slaughtered landrace gilts were subjected to the process of in vitro maturation. Transcriptomic changes in the expression profile of oocyte genes involved in response to hypoxia, the transmembrane protein receptor serine threonine kinase signaling pathway, the "transforming growth factor ß receptor signaling pathway", "response to protein stimulus", and "response to organic substance" were investigated using microarrays. The expression values of these genes in oocytes was analyzed before (immature) and after (mature) in vitro maturation, with significant differences found. All the significantly altered genes showed downregulation after the maturation process. The most changed genes from these gene ontologies, FOS, ID2, VEGFA, BTG2, CYR61, ESR1, AR, TACR3, CCND2, CHRDL1, were chosen to be further validated, described and related to the literature. Additionally, the mitochondrial activity of the analyzed oocytes was measured using specific dyes. We found that the mitochondrial activity was higher before the maturation process. The analysis of these results and the available literature provides a novel insight on the processes that occur during in vitro oocyte maturation. While this knowledge may prove to be useful in further research of the procedures commonly associated with in vitro fertilization procedures, it serves mostly as a basic reference for further proteomic, in vivo, and clinical studies that are necessary to translate it into practical applications.


Asunto(s)
Mitocondrias/metabolismo , Oocitos/metabolismo , Oogénesis/genética , Transcriptoma , Animales , Hipoxia de la Célula/genética , Células Cultivadas , Femenino , Técnicas de Maduración In Vitro de los Oocitos , Mitocondrias/genética , Oocitos/citología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Porcinos , Factor de Crecimiento Transformador beta/metabolismo
6.
Int J Mol Sci ; 19(4)2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29596348

RESUMEN

The oral mucosal tissue is a compound structure composed of morphologically and physiologically different cell types. The morphological modification involves genetically determined lifespan, which may be recognized as the balance between cell survival and apoptosis. Although the biochemical processes and pathways in oral mucosa, with special regards to drug transport, delivery, and metabolism, are well known, the cellular physiological homeostasis in this tissue requires further investigation. The porcine buccal pouch mucosal cells (BPMCs) collected from 20 pubertal crossbred Landrace gilts, were used in this study. Immediately after recovery, the oral mucosa was separated micro-surgically, and treated enzymatically. The dispersed cells were transferred into primary in vitro culture systems for a long-term cultivation of 30 days. After each step of in vitro culture (IVC), the cells were collected for isolation of total RNA at 24 h, 7, 15, and 30 days of IVC. While the expression was analyzed for days 7, 15, and 30, the 24th hour was used as a reference for outcome calibration. The gene expression profile was determined using Affymetrix microarray assays and necessary procedures. In results, we observed significant up-regulation of SCARB1, PTGS2, DUSP5, ITGB3, PLK2, CCL2, TGFB1, CCL8, RFC4, LYN, ETS1, REL, LIF, SPP1, and FGER1G genes, belonging to two ontological groups, namely "positive regulation of metabolic process", and "regulation of homeostatic process" at 7 day of IVC as compared to down-regulation at days 15 and 30. These findings suggest that the metabolic processes and homeostatic regulations are much more intense in porcine mucosal cells at day 7 of IVC. Moreover, the increased expression of marker genes, for both of these ontological groups, may suggest the existence of not only "morphological lifespan" during tissue keratinization, but also "physiological checkpoint" dedicated to metabolic processes in oral mucosa. This knowledge may be useful for preclinical experiments with drugs delivery and metabolism in both animals and humans.


Asunto(s)
Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Homeostasis , Mucosa Bucal/metabolismo , Animales , Células Cultivadas , Células Epiteliales/citología , Humanos , Mucosa Bucal/citología , Porcinos
7.
Int J Mol Sci ; 20(1)2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30587792

RESUMEN

The growth and development of oocyte affect the functional activities of the surrounding somatic cells. These cells are regulated by various types of hormones, proteins, metabolites, and regulatory molecules through gap communication, ultimately leading to the development and maturation of oocytes. The close association between somatic cells and oocytes, which together form the cumulus-oocyte complexes (COCs), and their bi-directional communication are crucial for the acquisition of developmental competences by the oocyte. In this study, oocytes were extracted from the ovaries obtained from crossbred landrace gilts and subjected to in vitro maturation. RNA isolated from those oocytes was used for the subsequent microarray analysis. The data obtained shows, for the first time, variable levels of gene expression (fold changes higher than |2| and adjusted p-value < 0.05) belonging to four ontological groups: regulation of cell proliferation (GO:0042127), regulation of cell migration (GO:0030334), and regulation of programmed cell death (GO:0043067) that can be used together as proliferation, migration or apoptosis markers. We have identified several genes of porcine oocytes (ID2, VEGFA, BTG2, ESR1, CCND2, EDNRA, ANGPTL4, TGFBR3, GJA1, LAMA2, KIT, TPM1, VCP, GRID2, MEF2C, RPS3A, PLD1, BTG3, CD47, MITF), whose expression after in vitro maturation (IVM) is downregulated with different degrees. Our results may be helpful in further elucidating the molecular basis and functional significance of a number of gene markers associated with the processes of migration, proliferation and angiogenesis occurring in COCs.


Asunto(s)
Apoptosis/genética , Proliferación Celular/genética , Oocitos/metabolismo , Transcriptoma , Animales , Movimiento Celular/genética , Células del Cúmulo/metabolismo , Células del Cúmulo/patología , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Técnicas de Maduración In Vitro de los Oocitos , Análisis de Secuencia por Matrices de Oligonucleótidos , Oocitos/crecimiento & desarrollo , Oocitos/patología , ARN/genética , ARN/metabolismo , Porcinos , Regulación hacia Arriba
8.
Reproduction ; 154(4): 535-545, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28733345

RESUMEN

Proper oocyte maturation in mammals produces an oocyte capable of monospermic fertilization and embryo preimplantation. The cumulus-oocyte complexes (COCs), surrounding an oocyte, play a significant role in oocyte maturation. During this process, when the COCs undergo cumulus expansion wherein tightly compact cumulus cells (CCs) form a dispersed structure, permanent biochemical and molecular modifications occur in the maturing oocytes, indicating that the gene expression between immature and mature oocytes differs significantly. This study focuses on the genes responsible for the cellular components of morphogenesis within the developing oocyte. Brilliant cresyl blue (BCB) was used to determine the developmental capability of porcine oocytes. The immature oocytes (GV stage) were compared with matured oocytes (MII stage), using microarray and qRT-PCR analysis to track changes in the genetic expression profile of transcriptome genes. The data showed substantial upregulation of genes influencing oocyte's morphology, cellular migration and adhesion, intracellular communication, as well as plasticity of nervous system. Conversely, downregulation involved genes related to microtubule reorganization, regulation of adhesion, proliferation, migration and cell differentiation processes in oocytes. This suggests that most genes recruited in morphogenesis in porcine oocyte in vitro, may have cellular maturational capability, since they have a higher level of expression before the oocyte's matured form. It shows the process of oocyte maturation and developmental capacity is orchestrated by significant cellular modifications during morphogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Técnicas de Maduración In Vitro de los Oocitos , Morfogénesis/genética , Oocitos/metabolismo , Animales , Adhesión Celular/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Femenino , Perfilación de la Expresión Génica/métodos , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Sus scrofa , Transcriptoma
9.
Reprod Biol Endocrinol ; 15(1): 43, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28576120

RESUMEN

BACKGROUND: The full maturational capability of mammalian oocytes is accompanied by nuclear and cytoplasmic modifications, which are associated with proliferation and differentiation of surrounding cumulus cells. These events are regulated on molecular level by the expression of target genes involved in signal transduction pathways crucial for folliculogenesis and oogenesis. Transforming growth factor beta signaling includes several molecules that are involved in the regulation of oogenesis and embryo growth, including bone morphogenetic protein (BMP). However, the BMP-related gene expression profile in oocytes at different maturational stages requires further investigation. METHODS: Oocytes were isolated from pubertal crossbred Landrace gilts follicles, selected with a use of BCB staining test and analyzed before and after in vitro maturation. Gene expression profiles were examined using an Affymetrix microarray approach and validated by RT-qPCR. Database for Annotation, Visualization, and Integrated Discovery (DAVID) software was used for the extraction of the genes belonging to a BMP-signaling pathway ontology group. RESULTS: The assay revealed 12,258 different transcripts in porcine oocytes, among which 379 genes were down-regulated and 40 were up-regulated. The DAVID database indicated a "BMP signaling pathway" ontology group, which was significantly regulated in both groups of oocytes. We discovered five up-regulated genes in oocytes before versus after in vitro maturation (IVM): chordin-like 1 (CHRDL1), follistatin (FST), transforming growth factor-beta receptor-type III (TGFßR3), decapentaplegic homolog 4 (SMAD4), and inhibitor of DNA binding 1 (ID1). CONCLUSIONS: Increased expression of CHRDL1, FST, TGFßR3, SMAD4, and ID1 transcripts before IVM suggested a subordinate role of the BMP signaling pathway in porcine oocyte maturational competence. Conversely, it is postulated that these genes are involved in early stages of folliculogenesis and oogenesis regulation in pigs, since in oocytes before IVM increased expression was observed.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Técnicas de Maduración In Vitro de los Oocitos , Oocitos/metabolismo , Oogénesis/genética , Porcinos/genética , Animales , Células del Cúmulo/citología , Células del Cúmulo/metabolismo , Células del Cúmulo/fisiología , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Análisis por Micromatrices , Oocitos/citología , Oocitos/fisiología , Transducción de Señal/genética , Porcinos/metabolismo , Transcriptoma
10.
Zygote ; 25(3): 331-340, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28669375

RESUMEN

Mammalian oocyte maturation is achieved when oocytes reach metaphase II (MII) stage, and accumulate mRNA and proteins in the cytoplasm following fertilization. It has been shown that oocytes investigated before and after in vitro maturation (IVM) differ significantly in transcriptomic and proteomic profiles. Additionally, folliculogenesis and oogenesis is accompanied by morphogenetic changes, which significantly influence further zygote formation and embryo growth. This study aimed to determine new transcriptomic markers of porcine oocyte morphogenesis that are associated with cell maturation competence. An Affymetrix microarray assay was performed on an RNA template isolated from porcine oocytes before (n = 150) and after (n = 150) IVM. The brilliant cresyl blue (BCB) staining test was used for identification of cells with the highest developmental capacity. DAVID (Database for Annotation, Visualization, and Integrated Discovery) software was used for the extraction of the genes belonging to a cell morphogenesis Gene Ontology group. The control group consisted of freshly isolated oocytes. In total, 12,000 different transcripts were analysed, from which 379 genes were downregulated and 40 were upregulated in oocytes following IVM. We found five genes, SOX9, MAP1B, DAB2, FN1, and CXCL12, that were significantly upregulated in oocytes after IVM (in vitro group) compared with oocytes analysed before IVM (in vivo group). In conclusion, we found new transcriptomic markers of oocyte morphogenesis, which may be also recognized as significant mediators of cellular maturation capacity in pigs. Genes SOX9, MAP1B, DAB2, FN1, and CXCL12 may be involved in the regulation of the MII stage oocyte formation and several other processes that are crucial for porcine reproductive competence.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos/fisiología , Transcriptoma , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Quimiocina CXCL12/genética , Femenino , Proteínas Asociadas a Microtúbulos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción SOX9/genética , Sus scrofa
11.
Int J Mol Sci ; 18(12)2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29232894

RESUMEN

Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes' maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB⁺ oocytes were directly exposed to microarray assays and RT-qPCR ("before IVM" group), or first in vitro matured and then if classified as BCB⁺ passed to molecular analyses ("after IVM" group). As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes' successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte's achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.


Asunto(s)
Regulación hacia Abajo , Redes Reguladoras de Genes , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/citología , Animales , Apoptosis , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Femenino , Oocitos/metabolismo , Oogénesis , Porcinos
12.
Int J Mol Sci ; 18(12)2017 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-29232835

RESUMEN

Because of the deep involvement of granulosa cells in the processes surrounding the cycles of menstruation and reproduction, there is a great need for a deeper understanding of the ways in which they function during the various stages of those cycles. One of the main ways in which the granulosa cells influence the numerous sex associated processes is hormonal interaction. Expression of steroid sex hormones influences a range of both primary and secondary sexual characteristics, as well as regulate the processes of oogenesis, folliculogenesis, ovulation, and pregnancy. Understanding of the exact molecular mechanisms underlying those processes could not only provide us with deep insight into the regulation of the reproductive cycle, but also create new clinical advantages in detection and treatment of various diseases associated with sex hormone abnormalities. We have used the microarray approach validated by RT-qPCR, to analyze the patterns of gene expression in primary cultures of human granulosa cells at days 1, 7, 15, and 30 of said cultures. We have especially focused on genes belonging to ontology groups associated with steroid biosynthesis and metabolism, namely "Regulation of steroid biosynthesis process" and "Regulation of steroid metabolic process". Eleven genes have been chosen, as they exhibited major change under a culture condition. Out of those, ten genes, namely STAR, SCAP, POR, SREBF1, GFI1, SEC14L2, STARD4, INSIG1, DHCR7, and IL1B, belong to both groups. Patterns of expression of those genes were analyzed, along with brief description of their functions. That analysis helped us achieve a better understanding of the exact molecular processes underlying steroid biosynthesis and metabolism in human granulosa cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Perfilación de la Expresión Génica/métodos , Células de la Granulosa/citología , Redes y Vías Metabólicas , Esteroides/biosíntesis , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Células de la Granulosa/metabolismo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
13.
Zygote ; 23(6): 863-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25315095

RESUMEN

This study was aimed at investigating zona pellucida glycoproteins (ZP) ZP2, ZP3 mRNA expression as well as ZP3, ZP4 (ZPB) protein distribution before and after in vitro maturation (IVM) in canine oocytes. The cumulus-oocyte complexes (COCs) were recovered from 27 anoestrous mongrel bitches and matured for 72 h in TCM199 medium. The canine COCs were analysed before and after IVM. Using real-time quantitative polymerase chain reaction (RQ-PCR), both groups of oocytes were analysed for detection of ZP2 and ZP3 mRNA profiles as well as using confocal microscopic analysis for observation of ZP3 and ZP4 protein distribution. In post-IVM canine oocytes an increase in transcript content of ZP2 and ZP3 genes as well as a decrease in ZP3 and ZP4 protein levels were observed when compared with pre-IVM oocytes. Moreover, the ZP4 protein before IVM was significantly distributed in the peripheral area of cytoplasm, whereas after IVM it was localized rather than in the entire cytoplasm. In contrast, the ZP3 protein was found both before and after IVM was distributed in the peripheral area of the cytoplasm. In conclusion, we suggest that the expression of ZP2 and ZP3 genes is associated with the maturation stage of canine oocytes, as higher mRNAs levels were found after IVM. However, a decreased expression of ZP3 and ZP4 proteins after IVM suggests maturation-dependent down-regulation of these protein translations, which may result in disturbed fertilization.


Asunto(s)
Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Oocitos/fisiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Animales , Células del Cúmulo/citología , Células del Cúmulo/fisiología , Perros , Femenino , Regulación de la Expresión Génica , Microscopía Confocal/métodos , Glicoproteínas de la Zona Pelúcida
14.
Mol Med Rep ; 24(3)2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34296308

RESUMEN

Following the publication of this paper, the authors have requested that, on p. 4412 of the above article in the Funding section of the Declarations, the acknowledgement to one of the funding sources should be removed from the paper; essentially, the reference to grant no. 2018/31/B/NZ5/02475, formulated by the Polish National Science Centre (grant providing institution), should be removed from the paper. Therefore, the revised version of the Funding section paragraph should read as follows: Funding: The present study was supported by a grant from Poznan University of Medical Sciences (grant no. 502­14­02227367­10694). The authors confirm that there are no further errors in the study, and all the authors agree to this correction. The authors are grateful to the Editor of Molecular Medicine Reports for granting them this opportunity to publish a Corrigendum, and apologize for any inconvenience caused. [the original article was published in Molecular Medicine Reports 20: 4403-4414, 2019, DOI: 10.3892/mmr.2019.10709].

15.
Mol Med Rep ; 21(4): 1749-1760, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32319615

RESUMEN

The process of neural tissue formation is associated primarily with the course of neurogenesis during embryonic life. The source of neural­like cells is stem cells, which, under the influence of appropriate differentiating factors, may differentiate/transdifferentiate towards a neural­like lineage. The present study suggested that, under long­term in vitro culture conditions, human ovarian granulosa cells (GCs), obtained from granulosa­rich follicular fluid, acquired new properties and expressed genes characteristic of the ontological groups 'neurogenesis' (GO:0022008), 'neuronal precursor cell proliferation' (GO:0061351) and 'nervous system development' (GO:0007399), which are closely related to the formation of neurons. The present study collected GCs from 20 women referred for the procedure of in vitro fertilization. Cells were maintained in long­term in vitro culture for 30 days, and RNA was isolated after 1, 7, 15 and 30 days of culture. The expression profile of individual genes was determined using the Affymetrix microarray method. The 131 genes with the highest expression change in relation to day 1 of culture were then selected; the 10 most affected genes found to be primarily involved in nerve cell formation processes were chosen for consideration in this study: CLDN11, OXTR, DFNA5, ATP8B1, ITGA3, CD9, FRY, NANOS1, CRIM1 and NTN4. The results of the present study revealed that these genes may be considered potential markers of the uninduced differentiation potential of GCs. In addition, it was suggested that GCs may be used to develop a cell line showing neuronal characteristics after 30 days of cultivation. In addition, due to their potential, these cells could possibly be used in the treatment of neurodegenerative diseases, not only in the form of 'cultured neurons' but also as producers of factors involved in the regeneration of the nervous system.


Asunto(s)
Transdiferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/citología , Adolescente , Adulto , Proliferación Celular/genética , Forma de la Célula/genética , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Adulto Joven
16.
J Clin Med ; 9(1)2020 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-31947922

RESUMEN

The deterioration of the human skeleton's capacity for self-renewal occurs naturally with age. Osteoporosis affects millions worldwide, with current treatments including pharmaceutical agents that target bone formation and/or resorption. Nevertheless, these clinical approaches often result in long-term side effects, with better alternatives being constantly researched. Mesenchymal stem cells (MSCs) derived from bone marrow and adipose tissue are known to hold therapeutic value for the treatment of a variety of bone diseases. The following review summarizes the latest studies and clinical trials related to the use of MSCs, both individually and combined with other methods, in the treatment of a variety of conditions related to skeletal health. For example, some of the most recent works noted the advantage of bone grafts based on biomimetic scaffolds combined with MSC and growth factor delivery, with a greatly increased regeneration rate and minimized side effects for patients. This review also highlights the continuing research into the mechanisms underlying bone homeostasis, including the key transcription factors and signalling pathways responsible for regulating the differentiation of osteoblast lineage. Paracrine factors and specific miRNAs are also believed to play a part in MSC differentiation. Furthering the understanding of the specific mechanisms of cellular signalling in skeletal remodelling is key to incorporating new and effective treatment methods for bone disease.

17.
Cancers (Basel) ; 12(4)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326172

RESUMEN

The epigenome denotes all the information related to gene expression that is not contained in the DNA sequence but rather results from chemical changes to histones and DNA. Epigenetic modifications act in a cooperative way towards the regulation of gene expression, working at the transcriptional or post-transcriptional level, and play a key role in the determination of phenotypic variations in cells containing the same genotype. Epigenetic modifications are important considerations in relation to anti-cancer therapy and regenerative/reconstructive medicine. Moreover, a range of clinical trials have been performed, exploiting the potential of epigenetics in stem cell engineering towards application in disease treatments and diagnostics. Epigenetic studies will most likely be the basis of future cancer therapies, as epigenetic modifications play major roles in tumour formation, malignancy and metastasis. In fact, a large number of currently designed or tested clinical approaches, based on compounds regulating epigenetic pathways in various types of tumours, employ these mechanisms in stem cell bioengineering.

18.
J Clin Med ; 9(4)2020 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-32290584

RESUMEN

Stem cell therapies offer a great promise for regenerative and reconstructive medicine, due to their self-renewal and differentiation capacity. Although embryonic stem cells are pluripotent, their utilization involves embryo destruction and is ethically controversial. Therefore, adult tissues that have emerged as an alternative source of stem cells and perinatal tissues, such as the umbilical cord, appear to be particularly attractive. Wharton's jelly, a gelatinous connective tissue contained in the umbilical cord, is abundant in mesenchymal stem cells (MSCs) that express CD105, CD73, CD90, Oct-4, Sox-2, and Nanog among others, and have the ability to differentiate into osteogenic, adipogenic, chondrogenic, and other lineages. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs) do not express MHC-II and exhibit immunomodulatory properties, which makes them a good alternative for allogeneic and xenogeneic transplantations in cellular therapies. Therefore, umbilical cord, especially Wharton's jelly, is a promising source of mesenchymal stem cells.

19.
J Clin Med ; 9(6)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503238

RESUMEN

The purpose of this study is to explore the possibilities for the application of laser therapy in medicine and dentistry by analyzing lasers' underlying mechanism of action on different cells, with a special focus on stem cells and mechanisms of repair. The interest in the application of laser therapy in medicine and dentistry has remarkably increased in the last decade. There are different types of lasers available and their usage is well defined by different parameters, such as: wavelength, energy density, power output, and duration of radiation. Laser irradiation can induce a photobiomodulatory (PBM) effect on cells and tissues, contributing to a directed modulation of cell behaviors, enhancing the processes of tissue repair. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), can induce cell proliferation and enhance stem cell differentiation. Laser therapy is a non-invasive method that contributes to pain relief and reduces inflammation, parallel to the enhanced healing and tissue repair processes. The application of these properties was employed and observed in the treatment of various diseases and conditions, such as diabetes, brain injury, spinal cord damage, dermatological conditions, oral irritation, and in different areas of dentistry.

20.
Mol Med Rep ; 21(3): 1537-1551, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32016446

RESUMEN

Oocyte maturation is essential for proper fertilization, embryo implantation and early development. While the physiological conditions of these processes are relatively well­known, its exact molecular mechanisms remain widely undiscovered. Oocyte growth, differentiation and maturation are therefore the subject of scientific debate. Precious literature has indicated that the oocyte itself serves a regulatory role in the mechanisms underlying these processes. Hence, the present study performed expression microarrays to analyze the complete transcriptome of porcine oocytes during their in vitro maturation (IVM). Pig material was used for experimentation, as it possesses similarities to the reproductive processes and general genetic proximities of Sus scrofa to human. Oocytes, isolated from the ovaries of slaughtered animals were assessed via the Brilliant Cresyl Blue test and directed to IVM. A number of oocytes were left to be analyzed as the 'before IVM' group. Oocyte mRNA was isolated and used for microarray analysis, which was subsequently validated via RT­qPCR. The current study particularly focused on genes belonging to 'positive regulation of transcription, DNA­dependent', 'positive regulation of gene expression', 'positive regulation of macromolecule metabolic process' and 'positive regulation of transcription from RNA polymerase II promoter' ontologies. FOS, VEGFA, ESR1, AR, CCND2, EGR2, ENDRA, GJA1, INHBA, IHH, INSR, APP, WWTR1, SMARCA1, NFAT5, SMAD4, MAP3K1, EGR1, RORA, ECE1, NR5A1, KIT, IKZF2, MEF2C, SH3D19, MITF and PSMB4 were all determined to be significantly altered (fold change, >|2|; P<0.05) among these groups, with their downregulation being observed after IVM. Genes with the most altered expressions were analyzed and considered to be potential markers of maturation associated with transcription regulation and macromolecule metabolism process.


Asunto(s)
Diferenciación Celular/genética , Metabolismo Energético , Regulación del Desarrollo de la Expresión Génica , Oocitos/citología , Oocitos/metabolismo , Oogénesis/genética , Animales , Biomarcadores , Células Cultivadas , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Inmunohistoquímica , Metabolómica , Ovario/metabolismo , Porcinos , Transcripción Genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA