Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 148(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34143204

RESUMEN

During retinal development, a large subset of progenitors upregulates the transcription factor Otx2, which is required for photoreceptor and bipolar cell formation. How these retinal progenitor cells initially activate Otx2 expression is unclear. To address this, we investigated the cis-regulatory network that controls Otx2 expression in mice. We identified a minimal enhancer element, DHS-4D, that drove expression in newly formed OTX2+ cells. CRISPR/Cas9-mediated deletion of DHS-4D reduced OTX2 expression, but this effect was diminished in postnatal development. Systematic mutagenesis of the enhancer revealed that three basic helix-loop-helix (bHLH) transcription factor-binding sites were required for its activity. Single cell RNA-sequencing of nascent Otx2+ cells identified the bHLH factors Ascl1 and Neurog2 as candidate regulators. CRISPR/Cas9 targeting of these factors showed that only the simultaneous loss of Ascl1 and Neurog2 prevented OTX2 expression. Our findings suggest that Ascl1 and Neurog2 act either redundantly or in a compensatory fashion to activate the DHS-4D enhancer and Otx2 expression. We observed redundancy or compensation at both the transcriptional and enhancer utilization levels, suggesting that the mechanisms governing Otx2 regulation in the retina are flexible and robust.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Organogénesis/genética , Factores de Transcripción Otx/genética , Retina/metabolismo , Animales , Secuencia de Bases , Elementos E-Box , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Noqueados , Ratones Transgénicos , Motivos de Nucleótidos , Factores de Transcripción Otx/metabolismo , Retina/embriología
2.
Dev Biol ; 488: 131-150, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644251

RESUMEN

How cone photoreceptors are formed during retinal development is only partially known. This is in part because we do not fully understand the gene regulatory network responsible for cone genesis. We reasoned that cis-regulatory elements (enhancers) active in nascent cones would be regulated by the same upstream network that controls cone formation. To dissect this network, we searched for enhancers active in developing cones. By electroporating enhancer-driven fluorescent reporter plasmids, we observed that a sequence within an intron of the cone-specific Pde6c gene acted as an enhancer in developing mouse cones. Similar fluorescent reporter plasmids were used to generate stable transgenic human induced pluripotent stem cells that were then grown into three-dimensional human retinal organoids. These organoids contained fluorescently labeled cones, demonstrating that the Pde6c enhancer was also active in human cones. We observed that enhancer activity was transient and labeled a minor population of developing rod photoreceptors in both mouse and human systems. This cone-enriched pattern argues that the Pde6c enhancer is activated in cells poised between rod and cone fates. Additionally, it suggests that the Pde6c enhancer is activated by the same regulatory network that selects or stabilizes cone fate choice. To further understand this regulatory network, we identified essential enhancer sequence regions through a series of mutagenesis experiments. This suggested that the Pde6c enhancer was regulated by transcription factor binding at five or more locations. Binding site predictions implicated transcription factor families known to control photoreceptor formation and families not previously associated with cone development. These results provide a framework for deciphering the gene regulatory network that controls cone genesis in both human and mouse systems. Our new transgenic human stem cell lines provide a tool for determining which cone developmental mechanisms are shared and distinct between mice and humans.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Fotorreceptoras Retinianas Conos , Animales , Humanos , Ratones , Animales Modificados Genéticamente , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Proteínas del Ojo/genética , Intrones/genética , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Factores de Transcripción/metabolismo
3.
Development ; 147(13)2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32541005

RESUMEN

The transcription factor OTX2 is required for photoreceptor and bipolar cell formation in the retina. It directly activates the transcription factors Prdm1 and Vsx2 through cell type-specific enhancers. PRDM1 and VSX2 work in opposition, such that PRDM1 promotes photoreceptor fate and VSX2 bipolar cell fate. To determine how OTX2+ cell fates are regulated in mice, we deleted Prdm1 and Vsx2 or their cell type-specific enhancers simultaneously using a CRISPR/Cas9 in vivo retina electroporation strategy. Double gene or enhancer targeting effectively removed PRDM1 and VSX2 protein expression. However, double enhancer targeting favored bipolar fate outcomes, whereas double gene targeting favored photoreceptor fate. Both conditions generated excess amacrine cells. Combined, these fate changes suggest that photoreceptors are a default fate outcome in OTX2+ cells and that VSX2 must be present in a narrow temporal window to drive bipolar cell formation. Prdm1 and Vsx2 also appear to redundantly restrict the competence of OTX2+ cells, preventing amacrine cell formation. By taking a combinatorial deletion approach of both coding sequences and enhancers, our work provides new insights into the complex regulatory mechanisms that control cell fate choice.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Fotorreceptoras/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Retina/metabolismo , Factores de Transcripción/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteínas de Homeodominio/genética , Ratones , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Retina/citología , Células Bipolares de la Retina/citología , Células Bipolares de la Retina/metabolismo , Factores de Transcripción/genética
4.
Dev Biol ; 464(2): 111-123, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32562755

RESUMEN

The transcription factors Prdm1 (Blimp1) and Vsx2 (Chx10) work downstream of Otx2 to regulate photoreceptor and bipolar cell fates in the developing retina. Mice that lack Vsx2 fail to form bipolar cells while Prdm1 mutants form excess bipolars at the direct expense of photoreceptors. Excess bipolars in Prdm1 mutants appear to derive from rods, suggesting that photoreceptor fate remains mutable for some time after cells become specified. Here we tested whether bipolar cell fate is also plastic during development. To do this, we created a system to conditionally misexpress Prdm1 at different stages of bipolar cell development. We found that Prdm1 blocks bipolar cell formation if expressed before the fate choice decision occurred. When we misexpressed Prdm1 just after the decision to become a bipolar cell was made, some cells were reprogrammed into photoreceptors. In contrast, Prdm1 misexpression in mature bipolar cells did not affect cell fate. We also provide evidence that sustained misexpression of Prdm1 was selectively toxic to photoreceptors. Our data show that bipolar fate is malleable, but only for a short temporal window following fate specification. Prdm1 and Vsx2 act by stabilizing photoreceptor and bipolar fates in developing OTX2+ cells of the retina.


Asunto(s)
Reprogramación Celular , Regulación del Desarrollo de la Expresión Génica , Células Fotorreceptoras de Vertebrados/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/biosíntesis , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Transgénicos , Mutación , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Células Fotorreceptoras de Vertebrados/citología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Biochem J ; 477(1): 75-97, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31815277

RESUMEN

Posterior capsule opacification (PCO) is a complication after cataract surgery that can disrupt vision. The epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) in response to transforming growth factor ß2 (TGFß2) has been considered an obligatory mechanism for PCO. In this study, we tested the efficacy of aspirin in inhibiting the TGFß2-mediated EMT of human LECs, LECs in human lens capsular bags, and lensectomized mice. In human LECs, the levels of the EMT markers α-smooth muscle actin (α-SMA) and fibronectin were drastically reduced by treatment with 2 mM aspirin. Aspirin also halted the EMT response of TGFß2 when introduced after EMT initiation. In human capsular bags, treatment with 2 mM aspirin significantly suppressed posterior capsule wrinkling and the expression α-SMA in capsule-adherent LECs. The inhibition of TGFß2-mediated EMT in human LECs was not dependent on Smad phosphorylation or MAPK and AKT-mediated signaling. We found that aspirin significantly increased the acetylation of K56 and K122 in histone H3 of human LECs. Chromatin immunoprecipitation assays using acetyl-H3K56 or acetyl-H3K122 antibody revealed that aspirin blocked the TGFß2-induced acetylation of H3K56 and H3K122 at the promoter regions of ACTA2 and COL1A1. After lensectomy in mice, we observed an increase in the proliferation and α-SMA expression of the capsule-adherent LECs, which was ameliorated by aspirin administration through drinking water. Taken together, our results showed that aspirin inhibits TGFß2-mediated EMT of LECs, possibly from epigenetic down-regulation of EMT-related genes.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Opacificación Capsular/tratamiento farmacológico , Células Epiteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Histonas/metabolismo , Cápsula Posterior del Cristalino/efectos de los fármacos , Acetilación , Actinas/metabolismo , Animales , Línea Celular , Células Epiteliales/patología , Fibronectinas/metabolismo , Humanos , Masculino , Ratones , Ratones de la Cepa 129
6.
Dev Biol ; 453(2): 155-167, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31163126

RESUMEN

Uncovering the gene regulatory networks that control cone photoreceptor formation has been hindered because cones only make up a few percent of the retina and form asynchronously during development. To overcome these limitations, we used a γ-secretase inhibitor, DAPT, to disrupt Notch signaling and force proliferating retinal progenitor cells to rapidly adopt neuronal identity. We treated mouse retinal explants at the peak of cone genesis with DAPT and examined tissues at several time-points by histology and bulk RNA-sequencing. We found that this treatment caused supernumerary cone formation in an overwhelmingly synchronized fashion. This analysis revealed several categorical patterns of gene expression changes over time relative to DMSO treated control explants. These were placed in the temporal context of the activation of Otx2, a transcription factor that is expressed at the onset of photoreceptor development and that is required for both rod and cone formation. One group of interest had genes, such as Mybl1, Ascl1, Neurog2, and Olig2, that became upregulated by DAPT treatment before Otx2. Two other groups showed upregulated gene expression shortly after Otx2, either transiently or permanently. This included genes such as Mybl1, Meis2, and Podxl. Our data provide a developmental timeline of the gene expression events that underlie the initial steps of cone genesis and maturation. Applying this strategy to human retinal organoid cultures was also sufficient to induce a massive increase in cone genesis. Taken together, our results provide a temporal framework that can be used to elucidate the gene regulatory logic controlling cone photoreceptor development.


Asunto(s)
Diferenciación Celular/genética , Perfilación de la Expresión Génica , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Organoides/efectos de los fármacos , Organoides/metabolismo , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
7.
Dev Biol ; 434(1): 149-163, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29258872

RESUMEN

Amacrine interneurons play a critical role in the processing of visual signals within the retina. They are highly diverse, representing 30 or more distinct subtypes. Little is known about how amacrine subtypes acquire their unique gene expression and morphological features. We characterized the gene expression pattern of the zinc-finger transcription factor Prdm13 in the mouse. Consistent with a developmental role, Prdm13 was expressed by Ptf1a+ amacrine and horizontal precursors. Over time, Prdm13 expression diverged from the transiently expressed Ptf1a and marked just a subset of amacrine cells in the adult retina. While heterogeneous, we show that most of these Prdm13+ amacrine cells express the transcription factor Ebf3 and the calcium binding protein calretinin. Loss of Prdm13 did not affect the number of amacrine cells formed during development. However, we observed a modest loss of amacrine cells and increased apoptosis that correlated with the onset timing of Ebf3 expression. Adult Prdm13 loss-of-function mice had 25% fewer amacrine cells, altered calretinin expression, and a lack of Ebf3+ amacrines. Forcing Prdm13 expression in retinal progenitor cells did not significantly increase amacrine cell formation, Ebf3 or calretinin expression, and appeared detrimental to the survival of photoreceptors. Our data show that Prdm13 is not required for amacrine fate as a class, but is essential for the formation of Ebf3+ amacrine cell subtypes. Rather than driving subtype identity, Prdm13 may act by restricting competing fate programs to maintain identity and survival.


Asunto(s)
Células Amacrinas/metabolismo , Apoptosis/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , N-Metiltransferasa de Histona-Lisina/biosíntesis , Células Madre/metabolismo , Factores de Transcripción/biosíntesis , Células Amacrinas/citología , Animales , Calbindina 2/biosíntesis , Calbindina 2/genética , Supervivencia Celular/fisiología , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Ratones Transgénicos , Células Madre/citología , Factores de Transcripción/genética
8.
Development ; 142(19): 3263-73, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26443631

RESUMEN

Photoreceptors--the light-sensitive cells in the vertebrate retina--have been extremely well-characterized with regards to their biochemistry, cell biology and physiology. They therefore provide an excellent model for exploring the factors and mechanisms that drive neural progenitors into a differentiated cell fate in the nervous system. As a result, great progress in understanding the transcriptional network that controls photoreceptor specification and differentiation has been made over the last 20 years. This progress has also enabled the production of photoreceptors from pluripotent stem cells, thereby aiding the development of regenerative medical approaches to eye disease. In this Review, we outline the signaling and transcription factors that drive vertebrate photoreceptor development and discuss how these function together in gene regulatory networks to control photoreceptor cell fate specification.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Redes Reguladoras de Genes/fisiología , Células-Madre Neurales/fisiología , Células Fotorreceptoras de Vertebrados/citología , Transducción de Señal/fisiología , Vertebrados/embriología , Animales , Humanos
9.
Glia ; 65(10): 1697-1716, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28722174

RESUMEN

Immature astrocytes and blood vessels enter the developing mammalian retina at the optic nerve head and migrate peripherally to colonize the entire retinal nerve fiber layer (RNFL). Retinal vascularization is arrested in retinopathy of prematurity (ROP), a major cause of bilateral blindness in children. Despite their importance in normal development and ROP, the factors that control vascularization of the retina remain poorly understood. Because astrocytes form a reticular network that appears to provide a substrate for migrating endothelial cells, they have long been proposed to guide angiogenesis. However, whether astrocytes do in fact impose a spatial pattern on developing vessels remains unclear, and how astrocytes themselves are guided is unknown. Here we explore the cellular mechanisms that ensure complete retinal coverage by astrocytes and blood vessels in mouse. We find that migrating astrocytes associate closely with the axons of retinal ganglion cells (RGCs), their neighbors in the RNFL. Analysis of Robo1; Robo2 mutants, in which RGC axon guidance is disrupted, and Math5 (Atoh7) mutants, which lack RGCs, reveals that RGCs provide directional information to migrating astrocytes that sets them on a centrifugal trajectory. Without this guidance, astrocytes exhibit polarization defects, fail to colonize the peripheral retina, and display abnormal fine-scale spatial patterning. Furthermore, using cell type-specific chemical-genetic tools to selectively ablate astrocytes, we show that the astrocyte template is required for angiogenesis and vessel patterning. Our results are consistent with a model whereby RGC axons guide formation of an astrocytic network that subsequently directs vessel development.


Asunto(s)
Astrocitos/fisiología , Axones/fisiología , Neovascularización Fisiológica/fisiología , Retina/citología , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Toxina Diftérica/farmacología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Neovascularización Fisiológica/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Células Ganglionares de la Retina/citología , Proteína Homeobox SIX3
10.
Hum Mol Genet ; 23(19): 5087-101, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24821700

RESUMEN

Congenital heart defects affect at least 0.8% of newborn children and are a major cause of lethality prior to birth. Malformations of the arterial pole are particularly frequent. The myocardium at the base of the pulmonary trunk and aorta and the arterial tree associated with these great arteries are derived from splanchnic mesoderm of the second heart field (SHF), an important source of cardiac progenitor cells. These cells are controlled by a gene regulatory network that includes Fgf8, Fgf10 and Tbx1. Prdm1 encodes a transcriptional repressor that we show is also expressed in the SHF. In mouse embryos, mutation of Prdm1 affects branchial arch development and leads to persistent truncus arteriosus (PTA), indicative of neural crest dysfunction. Using conditional mutants, we show that this is not due to a direct function of Prdm1 in neural crest cells. Mutation of Prdm1 in the SHF does not result in PTA, but leads to arterial pole defects, characterized by mis-alignment or reduction of the aorta and pulmonary trunk, and abnormalities in the arterial tree, defects that are preceded by a reduction in outflow tract size and loss of caudal pharyngeal arch arteries. These defects are associated with a reduction in proliferation of progenitor cells in the SHF. We have investigated genetic interactions with Fgf8 and Tbx1, and show that on a Tbx1 heterozygote background, conditional Prdm1 mutants have more pronounced arterial pole defects, now including PTA. Our results identify PRDM1 as a potential modifier of phenotypic severity in TBX1 haploinsufficient DiGeorge syndrome patients.


Asunto(s)
Epistasis Genética , Corazón/embriología , Mesodermo/metabolismo , Morfogénesis/genética , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Animales , Aorta Torácica/embriología , Aorta Torácica/metabolismo , Aorta Torácica/patología , Región Branquial/irrigación sanguínea , Región Branquial/embriología , Región Branquial/metabolismo , Región Branquial/patología , Embrión de Mamíferos , Femenino , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Genotipo , Masculino , Ratones , Ratones Transgénicos , Mutación , Organogénesis , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Células Madre/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
11.
Dev Biol ; 384(2): 194-204, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24125957

RESUMEN

During retinal development, photoreceptors and bipolar cells express the transcription factor Otx2. Blimp1 is transiently expressed in Otx2+ cells. Blimp1 deletion results in excess bipolar cell formation at the expense of photoreceptors. In principle, Blimp1 could be expressed only in Otx2+ cells that are committed to photoreceptor fate. Alternatively, Blimp1 could be expressed broadly in Otx2+ cells and silenced to allow bipolar cell development. To distinguish between these alternatives, we followed the fate of Blimp1 expressing cells using Blimp1-Cre mice and Lox-Stop-Lox reporter strains. We observed that Blimp1+ cells gave rise to all photoreceptors, but also to one third of bipolar cells, consistent with the latter alternative: that Blimp1 inhibits bipolar competence in Otx2+ cells and must be silenced to allow bipolar cell generation. To further test this hypothesis, we looked for transitioning rod photoreceptors in Blimp1 conditional knock-out (CKO) mice carrying the NRL-GFP transgene, which specifically labels rods. Control animals lacked NRL-GFP+ bipolar cells. In contrast, about half of the precociously generated bipolar cells in Blimp1 CKO mice co-expressed GFP, suggesting that rods become re-specified as bipolar cells. Birthdating analyses in control and Blimp1 CKO mice showed that bipolar cells were birthdated as early as E13.5 in Blimp1 CKO mice, five days before this cell type was generated in the wild-type retina. Taken together, our data suggest that early Otx2+ cells upregulate photoreceptor and bipolar genes, existing in a bistable state. Blimp1 likely forms a cross-repressive network with pro-bipolar factors such that the winner of this interaction stabilizes the photoreceptor or bipolar state, respectively.


Asunto(s)
Diferenciación Celular/fisiología , Células Fotorreceptoras de Vertebrados/citología , Retina/citología , Factores de Transcripción/fisiología , Animales , Inmunoprecipitación de Cromatina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Factores de Transcripción/genética
12.
Development ; 138(16): 3519-31, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21771810

RESUMEN

The mechanisms of cell fate diversification in the retina are not fully understood. The seven principal cell types of the neural retina derive from a population of multipotent progenitors during development. These progenitors give rise to multiple cell types concurrently, suggesting that progenitors are a heterogeneous population. It is thought that differences in progenitor gene expression are responsible for differences in progenitor competence (i.e. potential) and, subsequently, fate diversification. To elucidate further the mechanisms of fate diversification, we assayed the expression of three transcription factors made by retinal progenitors: Ascl1 (Mash1), Ngn2 (Neurog2) and Olig2. We observed that progenitors were heterogeneous, expressing every possible combination of these transcription factors. To determine whether this progenitor heterogeneity correlated with different cell fate outcomes, we conducted Ascl1- and Ngn2-inducible expression fate mapping using the CreER™/LoxP system. We found that these two factors gave rise to markedly different distributions of cells. The Ngn2 lineage comprised all cell types, but retinal ganglion cells (RGCs) were exceedingly rare in the Ascl1 lineage. We next determined whether Ascl1 prevented RGC development. Ascl1-null mice had normal numbers of RGCs and, interestingly, we observed that a subset of Ascl1+ cells could give rise to cells expressing Math5 (Atoh7), a transcription factor required for RGC competence. Our results link progenitor heterogeneity to different fate outcomes. We show that Ascl1 expression defines a competence-restricted progenitor lineage in the retina, providing a new mechanism to explain fate diversification.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Retina/embriología , Retina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Retina/citología
13.
Mol Cell Neurosci ; 54: 108-20, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23481413

RESUMEN

Retinal neurons and glia arise from a common progenitor pool in a temporal order, with retinal ganglion cells (RGCs) appearing first, and Müller glia last. The transcription factors Atoh7/Math5 and Ascl1/Mash1 represent divergent bHLH clades, and exhibit distinct spatial and temporal retinal expression patterns, with little overlap during early development. Here, we tested the ability of Ascl1 to change the fate of cells in the Atoh7 lineage when misexpressed from the Atoh7 locus, using an Ascl1-IRES-DsRed2 knock-in allele. In Atoh7(Ascl1KI/+) and Atoh7(Ascl1KI/Ascl1KI) embryos, ectopic Ascl1 delayed cell cycle exit and differentiation, even in cells coexpressing Atoh7. The heterozygous retinas recovered, and eventually produced a normal complement of RGCs, while homozygous substitution of Ascl1 for Atoh7 did not promote postnatal retinal fates precociously, nor rescue Atoh7 mutant phenotypes. However, our analyses revealed two unexpected findings. First, ectopic Ascl1 disrupted cell cycle progression within the marked Atoh7 lineage, but also nonautonomously in other retinal cells. Second, the size of the Atoh7 retinal lineage was unaffected, supporting the idea of a compensatory shift of the non-proliferative cohort to maintain lineage size. Overall, we conclude that Ascl1 acts dominantly to block cell cycle exit, but is incapable of redirecting the fates of early RPCs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular/genética , Linaje de la Célula , Proteínas del Tejido Nervioso/metabolismo , Retina/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , División Celular , Regulación del Desarrollo de la Expresión Génica , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Neuroglía/citología , Neuroglía/metabolismo , Fenotipo , Retina/crecimiento & desarrollo , Retina/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo
14.
Dev Biol ; 365(2): 395-413, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22445509

RESUMEN

The basic helix-loop-helix (bHLH) transcription factor Math5 (Atoh7) is transiently expressed during early retinal histogenesis and is necessary for retinal ganglion cell (RGC) development. Using nucleoside pulse-chase experiments and clonal analysis, we determined that progenitor cells activate Math5 during or after the terminal division, with progressively later onset as histogenesis proceeds. We have traced the lineage of Math5+ cells using mouse BAC transgenes that express Cre recombinase under strict regulatory control. Quantitative analysis showed that Math5+ progenitors express equivalent levels of Math5 and contribute to every major cell type in the adult retina, but are heavily skewed toward early fates. The Math5>Cre transgene labels 3% of cells in adult retina, including 55% of RGCs. Only 11% of Math5+ progenitors develop into RGCs; the majority become photoreceptors. The fate bias of the Math5 cohort, inferred from the ratio of cone and rod births, changes over time, in parallel with the remaining neurogenic population. Comparable results were obtained using Math5 mutant mice, except that ganglion cells were essentially absent, and late fates were overrepresented within the lineage. We identified Math5-independent RGC precursors in the earliest born (embryonic day 11) retinal cohort, but these precursors require Math5-expressing cells for differentiation. Math5 thus acts permissively to establish RGC competence within a subset of progenitors, but is not sufficient for fate specification. It does not autonomously promote or suppress the determination of non-RGC fates. These data are consistent with progressive and temporal restriction models for retinal neurogenesis, in which environmental factors influence the final histotypic choice.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/fisiología , Retina/embriología , Células Ganglionares de la Retina/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Células Ganglionares de la Retina/metabolismo
15.
Development ; 137(4): 619-29, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20110327

RESUMEN

Photoreceptors, rods and cones are the most abundant cell type in the mammalian retina. However, the molecules that control their development are not fully understood. In studies of photoreceptor fate determination, we found that Blimp1 (Prdm1) is expressed transiently in developing photoreceptors. We analyzed the function of Blimp1 in the mouse retina using a conditional deletion approach. Developmental analysis of mutants showed that Otx2(+) photoreceptor precursors ectopically express the bipolar cell markers Chx10 (Vsx2) and Vsx1, adopting bipolar instead of photoreceptor fate. However, this fate shift did not occur until the time when bipolar cells are normally specified during development. Most of the excess bipolar cells died around the time of bipolar cell maturation. Our results suggest that Blimp1 expression stabilizes immature photoreceptors by preventing bipolar cell induction. We conclude that Blimp1 regulates the decision between photoreceptor and bipolar cell fates in the Otx2(+) cell population during retinal development.


Asunto(s)
Células Fotorreceptoras de Vertebrados/citología , Retina/embriología , Retina/metabolismo , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Factores de Transcripción Otx/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Retina/citología , Retina/crecimiento & desarrollo , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
16.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36711950

RESUMEN

In the vertebrate retina, combinations of Notch ligands, receptors, and ternary complex components determine the destiny of retinal progenitor cells by regulating Hes effector gene activity. Owing to reiterated Notch signaling in numerous tissues throughout development, there are multiple vertebrate paralogues for nearly every node in this pathway. These Notch signaling components can act redundantly or in a compensatory fashion during development. To dissect the complexity of this pathway during retinal development, we used seven germline or conditional mutant mice and two spatiotemporally distinct Cre drivers. We perturbed the Notch ternary complex and multiple Hes genes with two overt goals in mind. First, we wished to determine if Notch signaling is required in the optic stalk/nerve head for Hes1 sustained expression and activity. Second, we aimed to test if Hes1, 3 and 5 genes are functionally redundant during early retinal histogenesis. With our allelic series, we found that disrupting Notch signaling consistently blocked mitotic growth and overproduced ganglion cells, but we also identified two significant branchpoints for this pathway. In the optic stalk/nerve head, sustained Hes1 is regulated independent of Notch signaling, whereas during photoreceptor genesis both Notch-dependent and -independent roles for Rbpj and Hes1 impact photoreceptor genesis in opposing manners.

17.
Invest Ophthalmol Vis Sci ; 58(2): 1137-1150, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28199486

RESUMEN

Purpose: How retinal bipolar cell interneurons are specified and assigned to specialized subtypes is only partially understood. In part, this is due to a lack of early pan- and subtype-specific bipolar cell markers. To discover these factors, we identified genes that were upregulated in Blimp1 (Prdm1) mutant retinas, which exhibit precocious bipolar cell development. Methods: Postnatal day (P)2 retinas from Blimp1 conditional knock-out (CKO) mice and controls were processed for RNA sequencing. Genes that increased at least 45% and were statistically different between conditions were considered candidate bipolar-specific factors. Candidates were further evaluated by RT-PCR, in situ hybridization, and immunohistochemistry. Knock-in Tmem215-LacZ mice were used to better trace retinal expression. Results: A comparison between Blimp1 CKO and control RNA-seq datasets revealed approximately 40 significantly upregulated genes. We characterized the expression of three genes that have no known function in the retina, Gsg1 (germ cell associated gene), Trnp1 (TMF-regulated nuclear protein), and Tmem215 (a predicted transmembrane protein). Germ cell associated gene appeared restricted to a small subset of cone bipolars while Trnp1 was seen in all ON type bipolar cells. Using Tmem215-LacZ heterozygous knock-in mice, we observed that ß-galactosidase expression started early in bipolar cell development. In adults, Tmem215 was expressed by a subset of ON and OFF cone bipolar cells. Conclusions: We have identified Gsg1, Tmem215, and Trnp1 as novel bipolar subtype-specific genes. The spatial and temporal pattern of their expression is consistent with a role in controlling bipolar subtype fate choice, differentiation, or physiology.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas Nucleares/genética , ARN/genética , Células Bipolares de la Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Factores de Transcripción/genética , Animales , Animales Recién Nacidos , Proteínas de Ciclo Celular , Diferenciación Celular , Proteínas de Unión al ADN , Proteínas de Homeodominio/biosíntesis , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/biosíntesis , Células Bipolares de la Retina/citología , Células Fotorreceptoras Retinianas Conos/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/biosíntesis
18.
Invest Ophthalmol Vis Sci ; 58(12): 5421-5433, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053761

RESUMEN

Purpose: Retinal ganglion cells (RGC) can be categorized into roughly 30 distinct subtypes. How these subtypes develop is poorly understood, in part because few unique subtype markers have been characterized. We tested whether the Prdm16 transcription factor is expressed by RGCs as a class or within particular ganglion cell subtypes. Methods: Embryonic and mature retinal sections and flatmount preparations were examined by immunohistochemistry for Prdm16 and several other cell type-specific markers. To visualize the morphology of Prdm16+ cells, we utilized Thy1-YFP-H transgenic mice, where a small random population of RGCs expresses yellow fluorescent protein (YFP) throughout the cytoplasm. Results: Prdm16 was expressed in the retina starting late in embryogenesis. Prdm16+ cells coexpressed the RGC marker Brn3a. These cells were arranged in an evenly spaced pattern and accounted for 2% of all ganglion cells. Prdm16+ cells coexpressed parvalbumin, but not calretinin, melanopsin, Smi32, or CART. This combination of marker expression and morphology data from Thy1-YFP-H mice suggested that the Prdm16+ cells represented a single ganglion cell subtype. Prdm16 also marked vascular endothelial cells and mural cells of retinal arterioles. Conclusions: A single subtype of ganglion cell appears to be uniquely marked by Prdm16 expression. While the precise identity of these ganglion cells is unclear, they most resemble the G9 subtype described by Völgyi and colleagues in 2009. Future studies are needed to determine the function of these ganglion cells and whether Prdm16 regulates their development.


Asunto(s)
Biomarcadores/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/metabolismo , Retina/embriología , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/clasificación , Factor de Transcripción Brn-3A/metabolismo
19.
PLoS One ; 12(8): e0176905, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28829770

RESUMEN

The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates.


Asunto(s)
Elementos de Facilitación Genéticos , Retina/metabolismo , Factores de Transcripción/genética , Animales , Ratones , Ratones Endogámicos C57BL , Factor 1 de Unión al Dominio 1 de Regulación Positiva
20.
Invest Ophthalmol Vis Sci ; 46(7): 2540-51, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15980246

RESUMEN

PURPOSE: To determine how the absence of retinal ganglion cells (RGCs) in Math5 (Atoh7) mutant mice affects circadian behavior and retinal function. METHODS: The wheel-running behavior of wild-type and Math5 mutant mice was measured under various light-dark cycle conditions. To evaluate retinal input to the suprachiasmatic nuclei (SCN) anatomically, the retinohypothalamic tracts were labeled in vivo. To assess changes in retinal function, corneal flash electroretinograms (ERGs) from mutant and wild-type mice were compared under dark- and light-adapted conditions. Alterations in retinal neuron populations were evaluated quantitatively and with cell-type-specific markers. RESULTS: The Math5-null mice did not entrain to light and exhibited free-running circadian behavior with a mean period (23.6 +/- 0.15 hours) that was indistinguishable from that of wild-type mice (23.4 +/- 0.19 hours). The SCN showed no anterograde labeling with a horseradish peroxidase-conjugated cholera toxin B (CT-HRP) tracer. ERGs recorded from mutant mice had diminished scotopic a- and b-wave and photopic b-wave amplitudes. The scotopic b-wave was more severely affected than the a-wave. The oscillatory potentials (OPs) and scotopic threshold response (STR) were also reduced. Consistent with these ERG findings, a pan-specific reduction in the number of bipolar cells and a smaller relative decrease in the number of rods in mutant mice were observed. CONCLUSIONS: Math5-null mice are clock-blind and have no RGC projections to the SCN. RGCs are thus essential for photoentrainment in mice, but are not necessary for the development or intrinsic function of the SCN clock. RGCs are not required to generate any of the major ERG waveforms in mice, including the STR, which is produced by ganglion cells in some other species. The diminished amplitude of b-wave, OPs, and STR components in Math5 mutants is most likely caused by the decreased abundance of retinal interneurons.


Asunto(s)
Trastornos Cronobiológicos/fisiopatología , Ritmo Circadiano , Proteínas del Tejido Nervioso/deficiencia , Retina/fisiopatología , Degeneración Retiniana/fisiopatología , Células Ganglionares de la Retina/patología , Factores de Transcripción/deficiencia , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Adaptación a la Oscuridad , Electrofisiología , Electrorretinografía , Secuencias Hélice-Asa-Hélice/fisiología , Interneuronas/fisiología , Luz , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Fotoperiodo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/metabolismo , Núcleo Supraquiasmático/fisiología , Factores de Transcripción/genética , Vías Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA