Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 352: 114492, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479678

RESUMEN

Individual-level assessments of wild animal health, vital rates, and foraging ecology are critical for understanding population-wide impacts of exposure to stressors. Large whales face multiple stressors, including, but not limited to, ocean noise, pollution, and ship strikes. Because baleen is a continuously growing keratinized structure, serial extraction, and quantification of hormones and stable isotopes along the length of baleen provide a historical record of whale physiology and foraging ecology. Furthermore, baleen analysis enables the investigation of dead specimens, even decades later, allowing comparisons between historic and modern populations. Here, we examined baleen of five sub-adult gray whales and observed distinct patterns of oscillations in δ15N values along the length of their baleen plates which enabled estimation of baleen growth rates and differentiation of isotopic niche widths of the whales during wintering and summer foraging. In contrast, no regular patterns were apparent in δ13C values. Prolonged elevation of cortisol in four individuals before death indicates that chronic stress may have impacted their health and survival. Triiodothyronine (T3) increased over months in the whales with unknown causes of death, simultaneous with elevations in cortisol, but both hormones remained stable in the one case of acute death attributed to killer whale predation. This parallel elevation of cortisol and T3 challenges the classic understanding of their interaction and might relate to increased energetic demands during exposure to stressors. Reproductive hormone profiles in subadults did not show cyclical trends, suggesting they had not yet reached sexual maturity. This study highlights the potential of baleen analysis to retrospectively assess gray whales' physiological status, exposure to stressors, reproductive status, and foraging ecology in the months or years leading up to their death, which can be a useful tool for conservation diagnostics to mitigate unusual mortality events.


Asunto(s)
Endocrinología , Ballenas , Animales , Hidrocortisona , Estudios Longitudinales , Estudios Retrospectivos
2.
Oecologia ; 198(1): 21-34, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34800166

RESUMEN

In waters off Península Valdés (PV), Argentina, southern right whales (SRW, Eubalaena australis) are occasionally exposed to domoic acid (DA), a neurotoxin produced by diatoms of the genus Pseudo-nitzschia. Domoic acid toxicity in marine mammals can cause gastrointestinal and neurological clinical signs, alterations in hematologic and endocrine variables, and can be fatal in extreme cases. In this study, we validated an enzyme immunoassay to quantify fecal glucocorticoid metabolites (fGCm) in 16 SRW fecal samples from live and dead stranded whales in PV from 2013 to 2018 and assessed fGCm levels associated with DA exposure. Overall, fGCm levels were significantly lower in SRWs with detectable fecal DA (n = 3) as compared to SRWs with undetectable fecal DA levels (n = 13). The highest fecal DA was observed in a live lactating female, which had low fGCm compared to the other lactating females studied. The highest fGCm was observed in a lactating female with undetectable DA; interestingly, at the time of sample collection, this female was sighted with two calves, an extremely unusual occurrence in this species. Though the sample size of these exceptionally rare breeding-season fecal samples was unavoidably small, our study provides evidence of potential adrenal alterations in whales exposed to an environmental neurotoxin such as DA.


Asunto(s)
Lactancia , Ballenas , Animales , Femenino , Ácido Kaínico/análogos & derivados , Estaciones del Año
3.
Gen Comp Endocrinol ; 325: 114053, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35580688

RESUMEN

The short-beaked echidna (Tachyglossus aculeatus) is a monotreme endemic to Australia and New Guinea, and is the most widespread native mammal in Australia. Despite its abundance, there are considerable gaps in our understanding of echidna life history such as reproductive cycles in both sexes, patterns of stress physiology, and possible seasonal changes in metabolism. Slow-growing integumentary sample types comprised of keratin (hair, claw, etc.) have been used in other wildlife to assess these questions via analysis of longitudinal patterns in steroid and thyroid hormones that are deposited in these tissues as they grow. Hairs and spines comprise the pelage of echidnas, the spines being keratinized structures homologous to hair. Thus, echidna spines could be a viable sample type for hormone analysis contributing to a better understanding of the biology of echidnas. The aim of this work was to determine whether steroid hormones are detectable in echidna spines, to perform assay validations, and to establish a protocol for extracting and quantifying hormones in echidna spines using commercially available assay kits. We also inspected cross-sectioned spines using light and electron microscopy for any evidence of annual growth markers that might enable inferences about spine growth rate. Corticosterone, progesterone, estradiol, and testosterone were detectable in all samples, and echidna spine extract passed standard assay validations (parallelism and accuracy), indicating that commercially available assay kits can quantify hormones accurately in this sample type. No visible growth marks were identified in the spines and thus spine growth rate is currently unknown. Echidna spines show promise as a novel matrix from which hormones can be quantified; next steps should involve determination of spine annual growth rate, possible seasonal changes in growth rate, and persistence of spines over time in order to perform physiological validations, i.e., relationship between physiological status and hormone concentrations in spines.


Asunto(s)
Tachyglossidae , Animales , Animales Salvajes , Anguilas , Femenino , Cabello , Hormonas , Masculino
4.
Gen Comp Endocrinol ; 309: 113795, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33891932

RESUMEN

Monitoring the physiology of wild populations presents many technical challenges. Blood samples, long the gold standard of wildlife endocrinology studies, cannot always be obtained. The validation and use of non-plasma samples to obtain hormone data have greatly improved access to more integrated information about an organism's physiological state. Keratinous tissues like skin, hair, nails, feathers, or baleen store steroid hormones in physiologically relevant concentrations, are stable across decades, and can be used to retrospectively infer physiological state at prior points in time. Most protocols for steroid extraction employ physical pulverization or cutting of the sample, followed by mixing with a solvent. Such methods do produce repeatable and useful data, but low hormone yield and detectability issues can complicate research on small or rare samples. We investigated the use of keratinase, an enzyme that breaks down keratin, to improve the extraction and yield of corticosterone from vertebrate keratin tissues. Corticosterone content of keratinase-digested extracts were compared to non-keratinase extracts for baleen from three species of whale (blue, Balaenoptera musculus; bowhead, Balaena mysticetus; southern right, SRW; Eubalaena australis), shed skin from two reptiles (tegu lizard, Salvator merianae; narrow-headed garter snake, Thamnophis rufipunctatus), hair from arctic ground squirrel (AGS; Urocitellus parryii), feathers from Purple Martins (PUMA; Progne subis), and spines from the short-beaked echidna (Tachyglossus aculeatus). We tested four starting masses (10, 25, 50, 100 mg) for each sample; digestion was most complete in the 10 and 25 mg samples. A corticosterone enzyme immunoassay (EIA) was validated for all keratinase-digested extracts. In all sample types except shed skin from reptiles, keratinase digestion improved hormone yield, with PUMA feathers and blue whale baleen having the greatest increase in apparent corticosterone content (100% and 66% more hormone, respectively). The reptilian shed skin samples did not benefit from keratinase digestion, actually yielding less hormone than controls. With further optimization and refinement, keratinase digestion could greatly improve yield of steroid hormones from various wildlife epidermal tissue types, allowing more efficient use of samples and ultimately improving understanding of the endocrine physiology of wild populations.


Asunto(s)
Balaenoptera , Queratinas , Animales , Corticosterona , Digestión , Péptido Hidrolasas , Estudios Retrospectivos , Esteroides
5.
Horm Behav ; 125: 104818, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32698015

RESUMEN

The dynamic relationship between glucocorticoids and behavior are not well understood in wild mammals. We investigated how weather, body condition, and reproduction interact to affect cortisol levels and activity patterns in a free-living population of arctic ground squirrels (Urocitellus parryii). As a proxy for foraging and escape behaviors, collar-mounted accelerometers and light loggers were used to measure above-ground activity levels and the amount of time squirrels spent below the surface, respectively. Fecal cortisol metabolites (FCMs) were quantified to assess glucocorticoid secretion in squirrels. Male and female squirrels differed in above-ground activity levels and time spent below-ground across the active season, with males being most active during mating and females most active during lactation. We also found that female, but not male, squirrels exhibited seasonal variation in FCM levels, with concentrations highest during mid-lactation and lowest after the lactation period. In female squirrels, the seasonal relationships between breeding stage, activity, and FCM levels were also consistent with changes in maternal investment and the preparative role that glucocorticoids are hypothesized to play in energy mobilization. Body condition was not associated with FCM levels in squirrels. As predicted, deteriorating weather also influenced FCM levels and activity patterns in squirrels. FCM concentrations were affected by an interaction between temperature and wind speed when seasonal temperatures were lowest. In addition, above-ground activity, but not time spent below-ground, positively correlated with FCM levels. These results suggest that, although ground squirrels avoid inclement weather by remaining below-ground, activation of the stress axis may stimulate foraging activity.


Asunto(s)
Constitución Corporal/fisiología , Glucocorticoides/metabolismo , Reproducción/fisiología , Sciuridae/fisiología , Tiempo (Meteorología) , Animales , Animales Salvajes , Heces/química , Femenino , Glucocorticoides/análisis , Hidrocortisona/análisis , Hidrocortisona/metabolismo , Lactancia/fisiología , Masculino , Sciuridae/metabolismo , Estaciones del Año
6.
Gen Comp Endocrinol ; 285: 113295, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31580883

RESUMEN

Life history transitions and hormones are known to interact and influence many aspects of animal physiology and behavior. The South-American tegu lizard (Salvator merianae) exhibits a profound seasonal shift in metabolism and body temperature, characterized by high daily activity during warmer months, including reproductive endothermy in spring, and metabolic suppression during hibernation in winter. This makes S. merianae an interesting subject for studies of interrelationships between endocrinology and seasonal changes in physiology/behavior. We investigated how plasma concentrations of hormones involved in regulation of energy metabolism (thyroid hormones T4 and T3; corticosterone) and reproduction (testosterone in males and estrogen/progesterone in females) correlate with activity and body temperature (Tb) across the annual cycle of captive held S. merianae in semi-natural conditions. In our initial model, thyroid hormones and corticosterone showed a positive relationship with activity and Tb with independent of sex: T3 positively correlated with activity and Tb, while T4 and corticosterone correlated positively with changes in Tb only. This suggests that thyroid hormones and glucocorticoids may be involved in metabolic transitions of annual cycle events. When accounting for sex-steroid hormones, our sex separated models showed a positive relationship between testosterone and Tb in males and progesterone and activity in females. Coupling seasonal endocrine measures with activity and Tb may expand our understanding of the relationship between animal's physiology and its environment. Manipulative experiments are required in order to unveil the directionality of influences existing among abiotic factors and the hormonal signaling of annual cyclicity in physiology/behavior.


Asunto(s)
Temperatura Corporal , Hormonas/metabolismo , Lagartos/fisiología , Animales , Corticosterona/sangre , Sistema Endocrino/metabolismo , Metabolismo Energético , Femenino , Glucocorticoides/metabolismo , Masculino , Progesterona/metabolismo , Estaciones del Año , Testosterona/metabolismo , Hormonas Tiroideas/metabolismo
7.
Gen Comp Endocrinol ; 296: 113536, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32540491

RESUMEN

Physiological measurements are informative in assessing the relative importance of stressors that potentially impact the health of wildlife. Kelp Gulls, Larus dominicanus (KG), resident to the region of Península Valdés, Argentina, have developed a unique behavior of landing on the backs of southern right whale adults and calves, Eubalaena australis (SRW), where they feed on their skin and blubber. This parasitic behavior results in large open wounds on the dorsal surface of the whale. Coincidently, the SRW population off the coast of Península Valdés has experienced elevated calf mortality. We quantified levels of glucocorticoids and thyroid hormone extracted from baleen of dead calves to evaluate, retrospectively, the endocrine response of whale calves to gull wounding and harassment. Baleen accumulates hormones as it grows, allowing evaluation of long-term trends in physiological condition. While glucocorticoids (GCs) are known to increase in response to stressors such as disturbance, the metabolic hormone triiodothyronine (T3) has been shown to decrease under sustained food deprivation but is largely unaffected by disturbance stress. We quantified lifetime patterns of GCs and T3 in baleen recovered at necropsy from 36 southern right whale calves with varying severity of wounding from KGs. GC levels in baleen correlated positively with the degree of wounding, while T3 levels remained stable irrespective of the severity of the wounding. Our results suggest no evidence of malnutrition in low vs. severely wounded whales. However, the positive correlation of GCs with wound severity indicates that heavily wounded calves are suffering high levels of physiological stress before they die. This suggests that KG wounding may have contributed to the high southern right whale calf mortality observed in the Península Valdés region of Argentina.


Asunto(s)
Charadriiformes/fisiología , Sistema Endocrino/metabolismo , Hormonas/metabolismo , Ballenas/metabolismo , Heridas y Lesiones/patología , Animales , Área Bajo la Curva , Argentina , Corticosterona/metabolismo , Femenino , Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Técnicas para Inmunoenzimas , Modelos Lineales , Masculino , Esteroides/metabolismo , Triyodotironina/metabolismo
8.
Horm Behav ; 110: 10-18, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30735664

RESUMEN

In many passerine birds, testosterone stimulates song and aggression but inhibits paternal care, but few studies have explored whether such effects can be reversed with testosterone blockers. We explored the effect of testosterone blockers on song, aggression and paternal care of Lapland longspurs (Calcarius lapponicus), an arctic passerine with a short breeding season. Twenty-one "blocker males" received implants containing an androgen receptor blocker and an aromatase inhibitor, compared to 27 control males with empty or no implants. Song, aggression and other behaviors were evaluated with simulated territorial intrusions (STI) during mate-guarding, and with focal observations (without STI) during mate-guarding and incubation. Nests were monitored and nestlings weighed as an indirect measure of paternal care. During STI, blocker males exhibited similar song rates, significantly lower aggression, and were significantly less likely to be found on territory than control males. Focal observations revealed no differences in spontaneous song, aggression, foraging, preening, or flight activity. Blocker males' nestlings had greater body mass on day 5 after hatching, but this difference disappeared by fledging, and both groups fledged similar numbers of young. Two blocker males exhibited unusual paternal care: incubation and brooding of young, or feeding of nestlings at another male's nest. In sum, testosterone blockers affected aggression but not song, contrasting with results from previously published testosterone implant studies. Effects on paternal care were concordant with testosterone implant studies. These patterns may be related to rapid behavioral changes characteristic of the short breeding season of the Arctic.


Asunto(s)
Agresión/efectos de los fármacos , Antagonistas de Receptores Androgénicos/farmacología , Comportamiento de Nidificación/efectos de los fármacos , Passeriformes/fisiología , Conducta Paterna/efectos de los fármacos , Testosterona/antagonistas & inhibidores , Vocalización Animal/efectos de los fármacos , Animales , Regiones Árticas , Masculino , Receptores Androgénicos/metabolismo , Reproducción/efectos de los fármacos , Estaciones del Año , Territorialidad , Testosterona/farmacología
9.
J Exp Biol ; 222(Pt 9)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31015287

RESUMEN

Muscular dystrophy with myositis (mdm) mice carry a deletion in the N2A region of the gene for the muscle protein titin (TTN), shiver at low frequency, fail to maintain body temperatures (Tb) at ambient temperatures (Ta) <34°C, and have reduced body mass and active muscle stiffness in vivo compared with wild-type (WT) siblings. Impaired shivering thermogenesis (ST) could be due to the mutated titin protein causing more compliant muscles. We hypothesized that non-shivering thermogenesis (NST) is impaired. To characterize the response to cold exposure, we measured Tb and metabolic rate (MR) of WT and mdm mice at four nominal temperatures: 20, 24, 29 and 34°C. Subsequently, we stimulated NST with noradrenaline. Manipulation of Ta revealed an interaction between genotype and MR: mdm mice had higher MRs at 29°C and lower MRs at 24°C compared with WT mice. NST capacity was lower in mdm mice than in WT mice. Using MR data from a previous study, we compared MR of mdm mice with MR of Perognathus longimembris, a mouse species of similar body mass. Our results indicated low MR and reduced NST of mdm mice. These were more pronounced than differences between mdm and WT mice owing to body mass effects on MR and capacity for NST. Correcting MR using Q10 showed that mdm mice had lower MRs than size-matched P. longimembris, indicating that mutated N2A titin causes severe thermoregulatory defects at all levels. Direct effects of the titin mutation lead to lower shivering frequency. Indirect effects likely lead to a lower capacity for NST and increased thermal conductance through decreased body size.


Asunto(s)
Metabolismo Basal , Ratones/fisiología , Proteínas Quinasas/genética , Termogénesis/genética , Animales , Proteínas Quinasas/metabolismo , Eliminación de Secuencia
10.
Gen Comp Endocrinol ; 280: 24-34, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30951726

RESUMEN

Fecal hormone analysis shows high potential for noninvasive assessment of population-level patterns in stress and reproduction of marine mammals. However, the marine environment presents unique challenges for fecal sample collection. Data are still lacking on collection methodology and assay validations for most species, particularly for those mysticete whales that have variable diets. In this study we tested collection techniques for fecal samples of free-swimming humpback whales (Megaptera novaeangliae), and validated immunoassays for five steroid and thyroid hormones. Resulting data were used for preliminary physiological validations, i.e., comparisons to independently confirmed sex and reproductive state. Pregnant females had significantly higher fecal progestins and glucocorticoids than did other demographic categories of whales. Two possible cases of previously undetected pregnancies were noted. Males had significantly higher fecal testosterone metabolites than nonpregnant females. Fecal glucocorticoids were significantly elevated in pregnant females and mature males compared to nonpregnant females. Calf fecal samples had elevated concentrations of all fecal hormones. Fecal thyroid hormones showed a significant seasonal decline from spring to summer. Though sample sizes were small, and sampling was necessarily opportunistic, these patterns indicate that noninvasive fecal hormone analysis may facilitate studies of reproduction, stress and potentially energetics in humpback whales.


Asunto(s)
Heces/química , Hormonas/metabolismo , Yubarta/fisiología , Estrés Fisiológico , Animales , Femenino , Glucocorticoides/metabolismo , Masculino , Metaboloma , Embarazo , Progestinas/metabolismo , Reproducibilidad de los Resultados , Reproducción/fisiología , Natación/fisiología , Testosterona/metabolismo , Hormonas Tiroideas/metabolismo
11.
Gen Comp Endocrinol ; 273: 134-143, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29913170

RESUMEN

The tegu lizard Salvator merianae is a large, widely distributed teiid lizard endemic to South America that exhibits annual cycles of high activity during the spring and summer, and hibernation during winter. This pattern of activity and hibernation is accompanied by profound seasonal changes in physiology and behavior, including endothermy during the austral spring. The unusual combination of seasonal endothermy, hibernation and oviparity, in a non-avian, non-mammalian species, makes S. merianae an interesting subject for study of comparative aspects of endocrine regulation of seasonal changes in physiology. In the present study, we first validated commercially available immunoassay kits for quantification of hormone concentrations of the reproductive (testosterone, estradiol and progesterone), adrenal (corticosterone), and thyroid [thyroxine (T4) and triiodothyronine (T3)] axes in plasma of an outdoor, captive adult male and female S. merianae in southeastern Brazil. All assays exhibited parallelism and accuracy with S. merianae plasma. We next assessed patterns of concentration of these hormones across the annual cycle of S. merianae. Testosterone in males and estradiol in females peaked in spring coincident with the peak in reproductive behavior. Progesterone in females was significantly elevated in October coincident with putative ovulation when gravid females build nests. Thyroid hormones, known for regulating energy metabolism, varied seasonally with some sex-dependent differences. T4 gradually increased from an annual nadir during pre-hibernation and hibernation to high concentrations during spring in both sexes. In contrast, T3 did not vary seasonally in males, but females showed a two-fold increase in T3 during the spring reproductive season. T3 may be involved in energy investment during the seasonal production of large clutches of eggs. Corticosterone was significantly elevated during the active season in both sexes, suggesting its involvement in mobilization of energy stores and modulation of behavior (territoriality) and physiology. Ours is the first investigation of concurrent changes in reproductive, thyroid and adrenal hormone concentrations in this endemic and physiologically unique South American lizard. Our findings set the stage for future investigations to determine the extent to which these hormones influence activity and thermoregulation in S. merianae.


Asunto(s)
Glucocorticoides/sangre , Lagartos/sangre , Estaciones del Año , Hormonas Tiroideas/sangre , Animales , Femenino , Hormonas Esteroides Gonadales/sangre , Masculino , Reproducibilidad de los Resultados , Reproducción/fisiología
12.
Environ Res ; 166: 537-543, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29958161

RESUMEN

Perfluoroalkyl substances (PFASs) are known to accumulate in traditional food animals of the Arctic, and arctic indigenous peoples may be exposed via consumption of subsistence-harvested animals. PFASs are suspected of disrupting thyroid hormone homeostasis in humans. The aim of this study is to assess the relationship between serum PFASs and thyroid function in a remote population of Alaska Natives. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska. The concentrations of 13 PFASs, as well as free and total thyroxine (T4), free and total triiodothyronine (T3), and thyrotropin (TSH) were quantified in serum samples. The relationships between circulating concentrations of PFASs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Several PFASs, including perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA), were positively associated with TSH concentrations when modeled individually. PFOS and PFNA were significantly associated with free T3 and PFNA was significantly associated with total T3 in models with PFAS*sex interactive terms; these associations suggested negative associations in men and positive associations in women. PFASs were not significantly associated with concentrations of free or total T4. Serum PFASs are associated with circulating thyroid hormone concentrations in a remote population of Alaska Natives. The effects of PFAS exposure on thyroid hormone homeostasis may differ between sexes.


Asunto(s)
Ácidos Alcanesulfónicos/análisis , Contaminantes Ambientales/análisis , Fluorocarburos/análisis , Hormonas Tiroideas/sangre , Alaska , Animales , Femenino , Humanos , Islas , Masculino
13.
Am Nat ; 190(6): 854-859, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29166160

RESUMEN

Hibernation provides a means of escaping the metabolic challenges associated with seasonality, yet the ability of mammals to prolong or reenter seasonal dormancy in response to extreme weather events is unclear. Here, we show that Arctic ground squirrels in northern Alaska exhibited sex-dependent plasticity in the physiology and phenology of hibernation in response to a series of late spring snowstorms in 2013 that resulted in the latest snowmelt on record. Females and nonreproductive males responded to the >1-month delay in snowmelt by extending heterothermy or reentering hibernation after several days of euthermy, leading to a >2-week delay in reproduction compared to surrounding years. In contrast, reproductive males neither extended nor reentered hibernation, likely because seasonal gonadal growth and development and subsequent testosterone release prevents a return to torpor. Our findings reveal intriguing differences in responses of males and females to climatic stressors, which can generate a phenological mismatch between the sexes.


Asunto(s)
Hibernación/fisiología , Sciuridae/fisiología , Alaska , Animales , Regiones Árticas , Fuentes Generadoras de Energía , Femenino , Masculino , Factores Sexuales
14.
Environ Microbiol ; 19(4): 1518-1535, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28251799

RESUMEN

We examined the effect of diet on pre-hibernation fattening and the gut microbiota of captive arctic ground squirrels (Urocitellus parryii). We measured body composition across time and gut microbiota density, diversity and function prior to and after five-weeks on control, high-fat, low-fat (18%, 40% and 10% energy from fat, respectively), or restricted calorie (50% of control) diets. Squirrels fattened at the same rate and to the same degree on all diets. Additionally, we found no differences in gut microbiota diversity or short chain fatty acid production across time or with diet. Analysis of the gut microbial transcriptome indicated differences in community function among diet groups, but not across time, and revealed shifts in the relative contribution of function at a taxonomic level. Our results demonstrate that pre-hibernation fattening of arctic ground squirrels is robust to changes in diet and is accomplished by more than increased food intake. Although our analyses did not uncover a definitive link between host fattening and the gut microbiota, and suggest the squirrels may possess a gut microbial community structure that is unresponsive to dietary changes, studies manipulating diet earlier in the active season may yet uncover a relationship between host diet, fattening and gut microbiota.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Sciuridae/microbiología , Animales , Ingestión de Alimentos , Ácidos Grasos Volátiles/metabolismo , Femenino , Hibernación , Estaciones del Año
15.
J Exp Biol ; 220(Pt 17): 3095-3102, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28623226

RESUMEN

Circadian systems are principally entrained to 24 h light-dark cycles, but this cue is seasonally absent in polar environments. Although some resident polar vertebrates have weak circadian clocks and are seasonally arrhythmic, the arctic ground squirrel (AGS) maintains daily rhythms of physiology and behavior throughout the summer, which includes 6 weeks of constant daylight. Here, we show that persistent daily rhythms in AGS are maintained through a circadian system that readily entrains to the polar day yet remains insensitive to entrainment by rapid light-dark transitions, which AGS generate naturally as a consequence of their semi-fossorial behavior. Additionally, AGS do not show 'jet lag', the slow realignment of circadian rhythms induced by the inertia of an intrinsically stable master circadian clock in the suprachiasmatic nucleus (SCN). We suggest this is due to the low expression of arginine vasopressin in the SCN of AGS, as vasopressin is associated with inter-neuronal coupling and robust rhythmicity.


Asunto(s)
Arginina Vasopresina/metabolismo , Ritmo Circadiano , Fotoperiodo , Sciuridae/fisiología , Animales , Regiones Árticas , Masculino
16.
Nature ; 540(7631): 49-50, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27880761
17.
Gen Comp Endocrinol ; 243: 60-69, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27815158

RESUMEN

Perchlorate is a ubiquitous environmental contaminant that has widespread endocrine disrupting effects in vertebrates, including threespine stickleback (Gasterosteus aculeatus). The target of perchlorate is thyroid tissue where it induces changes in the organization, activation, and morphology of thyroid follicles and surrounding tissues. To test the hypothesis that some phenotypes of perchlorate toxicity are not mediated by thyroid hormone, we chronically exposed stickleback beginning at fertilization to perchlorate (10, 30, 100ppm) or control water with and without supplementation of either iodide or thyroxine (T4). Stickleback were sampled across a one-year timespan to identify potential differences in responses to treatment combinations before and after sexual maturation. We found that most thyroid histomorphological phenotypes induced by perchlorate (follicle proliferation, reduced follicle area (adults only), colloid depletion, thyrocyte hypertrophy (subadults only)) were significantly ameliorated by exogenous iodide supplementation. In contrast, treatment with exogenous T4 did not correct any of the thyroid-specific histopathologies induced by perchlorate. Whole-body thyroid hormone concentrations were not significantly affected by perchlorate exposure; however, supplementation with iodide and T4 significantly increased T4 concentrations. This study also revealed an increased erythrocyte area in the thyroid region of perchlorate-exposed adults, while lipid droplet number increased in perchlorate-exposed subadults. Increased erythrocyte area was ameliorated by both iodide and T4, while neither supplement was able to correct lipid droplet number. Our finding on lipid droplets indicates that exposure to perchlorate in early development may have obesogenic effects.


Asunto(s)
Yoduros/farmacología , Percloratos/toxicidad , Disgenesias Tiroideas/prevención & control , Células Epiteliales Tiroideas/efectos de los fármacos , Glándula Tiroides/efectos de los fármacos , Tiroxina/farmacología , Animales , Fenotipo , Maduración Sexual/efectos de los fármacos , Smegmamorpha , Disgenesias Tiroideas/inducido químicamente
18.
Artículo en Inglés | MEDLINE | ID: mdl-28396263

RESUMEN

Stable carbon isotope ratios (δ13C) in breath show promise as an indicator of immediate metabolic fuel utilization in animals because tissue lipids have a lower δ13C value than carbohydrates and proteins. Metabolic fuel consumption is often estimated using the respiratory exchange ratio (RER), which has lipid and carbohydrate boundaries, but does not differentiate between protein and mixed fuel catabolism at intermediate values. Because lipids have relatively low δ13C values, measurements of stable carbon isotopes in breath may help distinguish between catabolism of protein and mixed fuel that includes lipid. We measured breath δ13C and RER concurrently in arctic ground squirrels (Urocitellus parryii) during steady-state torpor at ambient temperatures from -2 to -26°C. As predicted, we found a correlation between RER and breath δ13C values; however, the range of RER in this study did not reach intermediate levels to allow further resolution of metabolic substrate use with the addition of breath δ13C measurements. These data suggest that breath δ13C values are 1.1‰ lower than lipid tissue during pure lipid metabolism. From RER, we determined that arctic ground squirrels rely on nonlipid fuel sources for a significant portion of energy during torpor (up to 37%). The shift toward nonlipid fuel sources may be influenced by adiposity of the animals in addition to thermal challenge.


Asunto(s)
Dióxido de Carbono/metabolismo , Metabolismo Energético/fisiología , Hibernación/fisiología , Respiración , Animales , Temperatura Corporal , Carbono/metabolismo , Isótopos de Carbono/química , Metabolismo de los Lípidos/fisiología , Proteínas/metabolismo , Sciuridae/metabolismo
19.
Physiology (Bethesda) ; 30(2): 86-96, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25729054

RESUMEN

Polar organisms must cope with an environment that periodically lacks the strongest time-giver, or zeitgeber, of circadian organization-robust, cyclical oscillations between light and darkness. We review the factors influencing the persistence of circadian rhythms in polar vertebrates when the light-dark cycle is absent, the likely mechanisms of entrainment that allow some polar vertebrates to remain synchronized with geophysical time, and the adaptive function of maintaining circadian rhythms in such environments.


Asunto(s)
Ritmo Circadiano , Frío , Fotoperiodo , Vertebrados/fisiología , Adaptación Fisiológica , Animales , Evolución Biológica , Ritmo Circadiano/efectos de la radiación , Clima Frío , Humanos , Luz , Estimulación Luminosa , Especificidad de la Especie , Factores de Tiempo
20.
Artículo en Inglés | MEDLINE | ID: mdl-27139082

RESUMEN

The use of animal-borne instruments (ABIs), including biologgers and biotransmitters, has played an integral role in advancing our understanding of adjustments made by animals in their physiology and behavior across their annual and daily cycles and in response to weather and environmental change. Here, we review our research employing body temperature (Tb), light, and acceleration biologgers to measure patterns of physiology and behavior of a free-living, semi-fossorial hibernator, the arctic ground squirrel (Urocitellus parryii). We have used these devices to address a variety of physiological, ecological, and evolutionary questions within the fields of hibernation physiology, phenology, behavioral ecology, and chronobiology. We have also combined biologging with other approaches, such as endocrinology and tracking the thermal environment, to provide insights into the physiological mechanisms that underlie fundamental questions in biology including physiological performance trade-offs, timing and functional energetics. Finally, we explore the practical and methodological considerations that need to be addressed in biologging studies of free-living vertebrates and discuss future technological advancements that will increase the power and potential of biologging as a tool for assessing physiological function in dynamic and changing environments.


Asunto(s)
Hibernación/fisiología , Sciuridae/fisiología , Animales , Regiones Árticas , Conducta Animal , Temperatura Corporal , Ritmo Circadiano , Cambio Climático , Metabolismo Energético , Actividad Motora , Sciuridae/psicología , Telemetría/métodos , Telemetría/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA