Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Asian Nat Prod Res ; 25(8): 783-795, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36300534

RESUMEN

Carnosol is a natural compound with antioxidant properties. Based on this evidence, in the present study we investigated whether this compound can protect retinal vascular endothelium from hyperglycemic insult responsible for diabetic retinopathy development. We performed in vitro study on human retinal endothelial cells (HREC) cultured both in normal and high glucose conditions to assess the effects of carnosol on cell viability, Nrf2 expression, HO-1 activity, and ERK1/2 expression. HREC exposed to high glucose insult were treated with carnosol. Data indicated that carnosol treatment is able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by high glucose. Further, carnosol activation of Nrf2/HO-1 signaling axis involves ERK1/2 pathway. These data confirm the therapeutic value of carnosol by suggesting its use to treat diabetic retinopathy.

2.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38069070

RESUMEN

Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.


Asunto(s)
Medicina , Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Fosforilación Oxidativa
3.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835313

RESUMEN

Adolescent exposure to cannabinoids as a postnatal environmental insult may increase the risk of psychosis in subjects exposed to perinatal insult, as suggested by the two-hit hypothesis of schizophrenia. Here, we hypothesized that peripubertal Δ9-tetrahydrocannabinol (aTHC) may affect the impact of prenatal methylazoxymethanol acetate (MAM) or perinatal THC (pTHC) exposure in adult rats. We found that MAM and pTHC-exposed rats, when compared to the control group (CNT), were characterized by adult phenotype relevant to schizophrenia, including social withdrawal and cognitive impairment, as revealed by social interaction test and novel object recognition test, respectively. At the molecular level, we observed an increase in cannabinoid CB1 receptor (Cnr1) and/or dopamine D2/D3 receptor (Drd2, Drd3) gene expression in the prefrontal cortex of adult MAM or pTHC-exposed rats, which we attributed to changes in DNA methylation at key regulatory gene regions. Interestingly, aTHC treatment significantly impaired social behavior, but not cognitive performance in CNT groups. In pTHC rats, aTHC did not exacerbate the altered phenotype nor dopaminergic signaling, while it reversed cognitive deficit in MAM rats by modulating Drd2 and Drd3 gene expression. In conclusion, our results suggest that the effects of peripubertal THC exposure may depend on individual differences related to dopaminergic neurotransmission.


Asunto(s)
Dronabinol , Efectos Tardíos de la Exposición Prenatal , Esquizofrenia , Animales , Femenino , Humanos , Embarazo , Ratas , Modelos Animales de Enfermedad , Dopamina/metabolismo , Dronabinol/toxicidad , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores de Dopamina D3/metabolismo , Esquizofrenia/inducido químicamente
4.
Molecules ; 28(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37110558

RESUMEN

Age-related macular degeneration (AMD) has been described as a progressive eye disease characterized by irreversible impairment of central vision, and unfortunately, an effective treatment is still not available. It is well-known that amyloid-beta (Aß) peptide is one of the major culprits in causing neurodegeneration in Alzheimer's disease (AD). The extracellular accumulation of this peptide has also been found in drusen which lies under the retinal pigment epithelium (RPE) and represents one of the early signs of AMD pathology. Aß aggregates, especially in the form of oligomers, are able to induce pro-oxidant (oxidative stress) and pro-inflammatory phenomena in RPE cells. ARPE-19 is a spontaneously arising human RPE cell line validated for drug discovery processes in AMD. In the present study, we employed ARPE-19 treated with Aß oligomers, representing an in vitro model of AMD. We used a combination of methods, including ATPlite, quantitative real-time PCR, immunocytochemistry, as well as a fluorescent probe for reactive oxygen species to investigate the molecular alterations induced by Aß oligomers. In particular, we found that Aß exposure decreased the cell viability of ARPE-19 cells which was paralleled by increased inflammation (increased expression of pro-inflammatory mediators) and oxidative stress (increased expression of NADPH oxidase and ROS production) along with the destruction of ZO-1 tight junction protein. Once the damage was clarified, we investigated the therapeutic potential of carnosine, an endogenous dipeptide that is known to be reduced in AMD patients. Our findings demonstrate that carnosine was able to counteract most of the molecular alterations induced by the challenge of ARPE-19 with Aß oligomers. These new findings obtained with ARPE-19 cells challenged with Aß1-42 oligomers, along with the well-demonstrated multimodal mechanism of action of carnosine both in vitro and in vivo, able to prevent and/or counteract the dysfunctions elicited by Aß oligomers, substantiate the neuroprotective potential of this dipeptide in the context of AMD pathology.


Asunto(s)
Carnosina , Degeneración Macular , Humanos , Carnosina/farmacología , Carnosina/metabolismo , Retina/metabolismo , Péptidos beta-Amiloides/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Degeneración Macular/metabolismo , Dipéptidos/farmacología , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo
5.
J Neuroinflammation ; 18(1): 206, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530842

RESUMEN

BACKGROUND: Glaucoma is an optic neuropathy characterized by loss of function and death of retinal ganglion cells (RGCs), leading to irreversible vision loss. Neuroinflammation is recognized as one of the causes of glaucoma, and currently no treatment is addressing this mechanism. We aimed to investigate the anti-inflammatory and neuroprotective effects of 1,25(OH)2D3 (1α,25-dihydroxyvitamin D3, calcitriol), in a genetic model of age-related glaucomatous neurodegeneration (DBA/2J mice). METHODS: DBA/2J mice were randomized to 1,25(OH)2D3 or vehicle treatment groups. Pattern electroretinogram, flash electroretinogram, and intraocular pressure were recorded weekly. Immunostaining for RBPMS, Iba-1, and GFAP was carried out on retinal flat mounts to assess retinal ganglion cell density and quantify microglial and astrocyte activation, respectively. Molecular biology analyses were carried out to evaluate retinal expression of pro-inflammatory cytokines, pNFκB-p65, and neuroprotective factors. Investigators that analysed the data were blind to experimental groups, which were unveiled after graph design and statistical analysis, that were carried out with GraphPad Prism. Several statistical tests and approaches were used: the generalized estimated equations (GEE) analysis, t-test, and one-way ANOVA. RESULTS: DBA/2J mice treated with 1,25(OH)2D3 for 5 weeks showed improved PERG and FERG amplitudes and reduced RGCs death, compared to vehicle-treated age-matched controls. 1,25(OH)2D3 treatment decreased microglial and astrocyte activation, as well as expression of inflammatory cytokines and pNF-κB-p65 (p < 0.05). Moreover, 1,25(OH)2D3-treated DBA/2J mice displayed increased mRNA levels of neuroprotective factors (p < 0.05), such as BDNF. CONCLUSIONS: 1,25(OH)2D3 protected RGCs preserving retinal function, reducing inflammatory cytokines, and increasing expression of neuroprotective factors. Therefore, 1,25(OH)2D3 could attenuate the retinal damage in glaucomatous patients and warrants further clinical evaluation for the treatment of optic neuropathies.


Asunto(s)
Calcitriol/administración & dosificación , Glaucoma/metabolismo , Glaucoma/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Animales , Hormonas y Agentes Reguladores de Calcio/administración & dosificación , Femenino , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/fisiología , Glaucoma/genética , Ratones , Ratones Endogámicos DBA , Ratones Transgénicos
6.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919241

RESUMEN

Glaucoma is a heterogeneous group of chronic neurodegenerative disorders characterized by a relatively selective, progressive damage to the retinal ganglion cells (RGCs) and their axons, which leads to axon loss and visual field alterations. To date, many studies have shown the role of various elements, mainly metals, in maintaining the balance of prooxidative and antioxidative processes, regulation of fluid and ion flow through cell membranes of the ocular tissues. Based on the earlier and current research results, their relationship with the development and progression of glaucoma seems obvious and is increasingly appreciated. In this review, we aimed to summarize the current evidence on the role of trace elements in the pathogenesis and prevention of glaucomatous diseases. Special attention is also paid to the genetic background associated with glaucoma-related abnormalities of physiological processes that regulate or involve the ions of elements considered as trace elements necessary for the functioning of the cells.


Asunto(s)
Glaucoma/metabolismo , Oligoelementos/metabolismo , Animales , Glaucoma/inducido químicamente , Glaucoma/prevención & control , Humanos , Enfermedades Neurodegenerativas , Oligoelementos/farmacología
7.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922399

RESUMEN

Eye drop formulations allowing topical treatment of retinal pathologies have long been sought as alternatives to intravitreal administration. This study aimed to assess whether a novel nanostructured microemulsions system (NaMESys) could be usefully employed to deliver sorafenib to the retina following topical instillation. NaMESys carrying 0.3% sorafenib (NaMESys-SOR) proved to be cytocompatible in vitro on rabbit corneal cells, and well-tolerated following b.i.d. ocular administration to rabbits during a 3-month study. In rats subject to retinal ischemia-reperfusion, NaMESys-SOR significantly inhibited retinal expression of tumor necrosis factor-alpha (TNFα, 20.7%) and inducible nitric oxide synthase (iNos, 87.3%) mRNAs in comparison to controls. Similarly, in streptozotocin-induced diabetic rats, NaMESys-SOR inhibited retinal expression of nuclear factor kappa B (NFκB), TNFα, insulin like growth factor 1 (IGF1), IGF1 receptor (IGF1R), vascular endothelial growth factor receptor 1 (VEGFR1) and 2 (VEGFR2) mRNAs by three-fold on average compared to controls. Furthermore, a reduction in TNFα, VEGFR1 and VEGFR2 protein expression was observed by western blot. Moreover, in mice subject to laser-induced choroidal neovascularization, NaMESys-SOR significantly inhibited neovascular lesions by 54%. In conclusion, NaMESys-SOR was shown to be a well-tolerated ophthalmic formulation able to deliver effective amounts of sorafenib to the retina, reducing proinflammatory and pro-angiogenic mediators in reliable models of proliferative retinopathies. These findings warrant further investigations on the full therapeutic potential of NaMESys-SOR eye drops, aiming to address unmet needs in the pharmacotherapy of retinal neovascular diseases.


Asunto(s)
Neovascularización Coroidal/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Retinopatía Diabética/tratamiento farmacológico , Nanoestructuras/administración & dosificación , Enfermedades de la Retina/tratamiento farmacológico , Neovascularización Retiniana/tratamiento farmacológico , Sorafenib/farmacología , Administración Oftálmica , Animales , Retinopatía Diabética/etiología , Retinopatía Diabética/patología , Modelos Animales de Enfermedad , Emulsiones , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Nanoestructuras/química , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Conejos , Ratas , Ratas Sprague-Dawley , Enfermedades de la Retina/patología , Sorafenib/administración & dosificación
8.
Molecules ; 26(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361825

RESUMEN

Lipid-based nanocarriers (LNs) have made it possible to prolong corneal residence time and improve the ocular bioavailability of ophthalmic drugs. In order to investigate how the LNs interact with the ocular mucosa and reach the posterior eye segment, we have formulated lipid nanocarriers that were designed to bear a traceable fluorescent probe in the present work. The chosen fluorescent probe was obtained by a conjugation reaction between fluoresceinamine and the solid lipid excipient stearic acid, forming a chemically synthesized adduct (ODAF, N-(3',6'-dihydroxy-3-oxospiro [isobenzofuran-1(3H),9'-[9H] xanthen]-5-yl)-octadecanamide). The novel formulation (LN-ODAF) has been formulated and characterized in terms of its technological parameters (polydispersity index, mean particle size and zeta potential), while an in vivo study was carried out to assess the ability of LN-ODAF to diffuse through different ocular compartments. LN-ODAF were in nanometric range (112.7 nm ± 0.4), showing a good homogeneity and long-term stability. A TEM (transmission electron microscopy) study corroborated these results of characterization. In vivo results pointed out that after ocular instillation, LN ODAF were concentrated in the cornea (two hours), while at a longer time (from the second hour to the eighth hour), the fluorescent signals extended gradually towards the back of the eye. From the results obtained, LN-ODAF demonstrated a potential use of lipid-based nanoparticles as efficient carriers of an active pharmaceutical ingredient (API) involved in the management of retinal diseases.


Asunto(s)
Córnea/metabolismo , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Lípidos/química , Nanopartículas/administración & dosificación , Segmento Posterior del Ojo/metabolismo , Compuestos de Espiro/administración & dosificación , Animales , Córnea/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Segmento Posterior del Ojo/efectos de los fármacos , Conejos , Compuestos de Espiro/química
9.
J Cell Mol Med ; 24(21): 12298-12307, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33058526

RESUMEN

The aim of this study was to investigate the effects of the lipid mediator Resolvin D1 in experimental keratitis. C57BL/6J mice were injected with lipopolysaccharide (2 µg/eye), and after 24 hours, the corneal damage was assessed. Clinical score was quantified, and corneal inflammatory biomarkers were detected by immunohistochemistry. A robust accumulation of sub-epithelial macrophages and polymorphonuclear leucocytes, chemokine (C-X-C motif) ligand 1 (also known as keratinocyte-derived chemokine), interleukin-10 and promoters of apoptosis was also observed in lipopolysaccharide-treated mice. Formyl peptide receptor 2 corneal expression was also assessed. The corneal stroma treated with lipopolysaccharide was characterized by presence of macrophages of M1-like subtype and immature fibroblastic cells, marked with Ki67, not fully differentiated in fibroblasts. Indeed, the staining of the cornea with anti-vimentin antibodies, a marker of differentiated myofibroblasts, was very faint. Resolvin D1 attenuated all the inflammatory parameters assessed in the present study, except for IL-10. In conclusion, the data presented here seem to be consistent with the hypothesis that Resolvin D1 protected the cornea from the lipopolysaccharide-induced keratitis by acting on several inflammatory components of this damage, pivoted by Formyl peptide receptor 2 (FPR2) activation and macrophages-leucocytes activity.


Asunto(s)
Sustancia Propia/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Inflamación/metabolismo , Queratitis/tratamiento farmacológico , Animales , Apoptosis , Conexina 43/metabolismo , Córnea/efectos de los fármacos , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Inmunohistoquímica , Interleucina-10/metabolismo , Queratitis/inducido químicamente , Queratitis/metabolismo , Antígeno Ki-67/metabolismo , Leucocitos/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Vimentina/metabolismo
10.
J Neuroinflammation ; 17(1): 298, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33050925

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive degeneration and loss of neurons in specific regions of the central nervous system. Chronic activation of the immune cells resident in the brain, peripheral immune cell trafficking across the blood-brain barrier, and release of inflammatory and neurotoxic factors, appear critical contributors of the neuroinflammatory response that drives the progression of neurodegenerative processes in AD. As the neuro-immune network is impaired in course of AD, this review is aimed to point out the essential supportive role of innate and adaptive immune response either in normal brain as well as in brain recovery from injury. Since a fine-tuning of the immune response appears crucial to ensure proper nervous system functioning, we focused on the role of the TNF superfamily member, TNF-related apoptosis-inducing ligand (TRAIL), which modulates both the innate and adaptive immune response in the pathogenesis of several immunological disorders and, in particular, in AD-related neuroinflammation. We here summarized mounting evidence of potential involvement of TRAIL signaling in AD pathogenesis, with the aim to provide clearer insights about potential novel therapeutic approaches in AD.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Encéfalo/inmunología , Inmunidad Celular/fisiología , Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
11.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333908

RESUMEN

Novel heme oxygenase-1 (HO-1) inducers based on dimethyl fumarate (DMF) structure are reported in this paper. These compounds are obtained by modification of the DMF backbone. Particularly, maintaining the α, ß-unsaturated dicarbonyl function as the central chain crucial for HO-1 induction, different substituted or unsubstituted phenyl rings are introduced by means of an ester or amide linkage. Symmetric and asymmetric derivatives are synthesized. All compounds are tested on a human hepatic stellate cell line LX-2 to assay their capacity for modifying HO-1 expression. Compounds 1b, 1l and 1m stand out for their potency as HO-1 inducers, being 2-3 fold more active than DMF, and for their ability to reverse reactive oxygen species (ROS) production mediated using palmitic acid (PA). These properties, coupled with a low toxicity toward LX-2 cell lines, make these compounds potentially useful for treatment of diseases in which HO-1 overexpression may counteract inflammation, such as hepatic fibrosis. Docking studies show a correlation between predicted binding free energy and experimental HO-1 expression data. These preliminary results may support the development of new approaches in the management of liver fibrosis.


Asunto(s)
Dimetilfumarato/química , Dimetilfumarato/farmacología , Hemo-Oxigenasa 1/metabolismo , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Dimetilfumarato/análogos & derivados , Dimetilfumarato/síntesis química , Humanos , Simulación del Acoplamiento Molecular , Ácido Palmítico/farmacología , Especies Reactivas de Oxígeno/metabolismo
12.
Int J Mol Sci ; 21(23)2020 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33291318

RESUMEN

Activation of P2X7 signaling, due to high glucose levels, leads to blood retinal barrier (BRB) breakdown, which is a hallmark of diabetic retinopathy (DR). Furthermore, several studies report that high glucose (HG) conditions and the related activation of the P2X7 receptor (P2X7R) lead to the over-expression of pro-inflammatory markers. In order to identify novel P2X7R antagonists, we carried out virtual screening on a focused compound dataset, including indole derivatives and natural compounds such as caffeic acid phenethyl ester derivatives, flavonoids, and diterpenoids. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring and structural fingerprint clustering of docking poses from virtual screening highlighted that the diterpenoid dihydrotanshinone (DHTS) clustered with the well-known P2X7R antagonist JNJ47965567. A human-based in vitro BRB model made of retinal pericytes, astrocytes, and endothelial cells was used to assess the potential protective effect of DHTS against HG and 2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate (BzATP), a P2X7R agonist, insult. We found that HG/BzATP exposure generated BRB breakdown by enhancing barrier permeability (trans-endothelial electrical resistance (TEER)) and reducing the levels of ZO-1 and VE-cadherin junction proteins as well as of the Cx-43 mRNA expression levels. Furthermore, HG levels and P2X7R agonist treatment led to increased expression of pro-inflammatory mediators (TLR-4, IL-1ß, IL-6, TNF-α, and IL-8) and other molecular markers (P2X7R, VEGF-A, and ICAM-1), along with enhanced production of reactive oxygen species. Treatment with DHTS preserved the BRB integrity from HG/BzATP damage. The protective effects of DHTS were also compared to the validated P2X7R antagonist, JNJ47965567. In conclusion, we provided new findings pointing out the therapeutic potential of DHTS, which is an inhibitor of P2X7R, in terms of preventing and/or counteracting the BRB dysfunctions elicited by HG conditions.


Asunto(s)
Barrera Hematorretinal/efectos de los fármacos , Furanos/farmacología , Fenantrenos/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/toxicidad , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Sitios de Unión , Barrera Hematorretinal/citología , Barrera Hematorretinal/metabolismo , Permeabilidad Capilar , Línea Celular , Conexina 43/metabolismo , Citocinas/metabolismo , Citoprotección , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Furanos/química , Humanos , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Fenantrenos/química , Unión Proteica , Agonistas del Receptor Purinérgico P2X/toxicidad , Antagonistas del Receptor Purinérgico P2X/química , Quinonas , Especies Reactivas de Oxígeno/metabolismo , Receptores Purinérgicos P2X7/química
13.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32121029

RESUMEN

Blood-retinal barrier (BRB) dysfunction represents one of the most significant changes occurring during diabetic retinopathy. We set up a high-reproducible human-based in vitro BRB model using retinal pericytes, retinal astrocytes, and retinal endothelial cells in order to replicate the human in vivo environment with the same numerical ratio and layer order. Our findings showed that high glucose exposure elicited BRB breakdown, enhanced permeability, and reduced the levels of junction proteins such as ZO-1 and VE-cadherin. Furthermore, an increased expression of pro-inflammatory mediators (IL-1ß, IL-6) and oxidative stress-related enzymes (iNOS, Nox2) along with an increased production of reactive oxygen species were observed in our triple co-culture paradigm. Finally, we found an activation of immune response-regulating signaling pathways (Nrf2 and HO-1). In conclusion, the present model mimics the closest human in vivo milieu, providing a valuable tool to study the impact of high glucose in the retina and to develop novel molecules with potential effect on diabetic retinopathy.


Asunto(s)
Astrocitos/metabolismo , Barrera Hematorretinal/metabolismo , Células Endoteliales/metabolismo , Glucosa/metabolismo , Pericitos/metabolismo , Retina/metabolismo , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Barrera Hematorretinal/enzimología , Cadherinas/metabolismo , Técnicas de Cocultivo , Glucosa/farmacología , Hemo-Oxigenasa 1/metabolismo , Humanos , Técnicas In Vitro , Inflamación/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Modelos Biológicos , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Quinasa de Factor Nuclear kappa B
14.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33065984

RESUMEN

Early blood retinal barrier (BRB) dysfunction induced by hyperglycemia was related to increased pro-inflammatory activity of phospholipase A2 (PLA2) and the upregulation of vascular endothelial growth factor A (VEGF-A). Here, we tested the role of VEGF-A in high glucose (HG)-induced damage of human retinal endothelial cells (HRECs) mediated by Ca++-dependent (cPLA2) and Ca++-independent (iPLA2) PLA2s. HRECs were treated with normal glucose (5 mM, NG) or high glucose (25 mM, HG) for 48 h with or without the VEGF-trap Aflibercept (Afl, 40 µg/mL), the cPLA2 inhibitor arachidonoyl trifluoromethyl ketone (AACOCF3; 15 µM), the iPLA2 inhibitor bromoenol lactone (BEL; 5 µM), or VEGF-A (80 ng/mL). Both Afl and AACOCF3 prevented HG-induced damage (MTT and LDH release), impairment of angiogenic potential (tube-formation), and expression of VEGF-A mRNA. Furthermore, Afl counteracted HG-induced increase of phospho-ERK and phospho-cPLA2 (immunoblot). VEGF-A in HG-medium increased glucose toxicity, through upregulation of phospho-ERK, phospho-cPLA2, and iPLA2 (about 55%, 45%, and 50%, respectively); immunocytochemistry confirmed the activation of these proteins. cPLA2 knockdown by siRNA entirely prevented cell damage induced by HG or by HG plus VEGF-A, while iPLA2 knockdown produced a milder protective effect. These data indicate that VEGF-A mediates the early glucose-induced damage in retinal endothelium through the involvement of ERK1/2/PLA2 axis activation.


Asunto(s)
Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosfolipasas A2/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/farmacología , Ácidos Araquidónicos/farmacología , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Endotelio Vascular/citología , Glucosa/toxicidad , Humanos , Inhibidores de Fosfolipasa A2/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular , Proteínas Recombinantes de Fusión/farmacología
15.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334029

RESUMEN

Transforming growth factor ß1 (TGFß1) is a proinflammatory cytokine that has been implicated in the pathogenesis of diabetic retinopathy (DR), particularly in the late phase of disease. The aim of the present study was to validate serum TGFß1 as a diagnostic and prognostic biomarker of DR stages. Thirty-eight subjects were enrolled and, after diagnosis and evaluation of inclusion and exclusion criteria, were assigned to six groups: (1) healthy age-matched control, (2) diabetic without DR, (3) non-proliferative diabetic retinopathy (NPDR) naïve to treatment, (4) NPDR treated with intravitreal (IVT) aflibercept, (5) proliferative diabetic retinopathy (PDR) naïve to treatment and (6) PDR treated with IVT aflibercept. Serum levels of vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF) and TGFß1 were measured by means of enzyme-linked immunosorbent assay (ELISA). Foveal macular thickness (FMT) in enrolled subjects was evaluated by means of structural-optical coherence tomography (S-OCT). VEGF-A serum levels decreased in NPDR and PDR patients treated with aflibercept, compared to naïve DR patients. PlGF serum levels were modulated only in aflibercept-treated NPDR patients. Particularly, TGFß1 serum levels were predictive of disease progression from NPDR to PDR. A Multivariate ANOVA analysis (M-ANOVA) was also carried out to assess the effects of fixed factors on glycated hemoglobin (HbA1c) levels, TGFß1, and diabetes duration. In conclusion, our data have strengthened the hypothesis that TGFß1 would be a biomarker and pharmacological target of diabetic retinopathy.


Asunto(s)
Biomarcadores/sangre , Retinopatía Diabética/sangre , Factor de Crecimiento Transformador beta/sangre , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Anciano , Anciano de 80 o más Años , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/tratamiento farmacológico , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Masculino , Terapia Molecular Dirigida , Curva ROC , Tomografía de Coherencia Óptica
16.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991717

RESUMEN

Carnosine is a natural endogenous dipeptide widely distributed in mammalian tissues, existing at particularly high concentrations in the muscles and brain and possesses well-characterized antioxidant and anti-inflammatory activities. In an in vitro model of macrophage activation, induced by lipopolysaccharide + interferon-gamma (LPS + IFN-γ), we here report the ability of carnosine to modulate pro-oxidant and pro-inflammatory activities of macrophages, representing the primary cell type that is activated as a part of the immune response. An ample set of parameters aimed to evaluate cytotoxicity (MTT assay), energy metabolism (HPLC), gene expressions (high-throughput real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide production (qRT-PCR and HPLC), was used to assess the effects of carnosine on activated macrophages challenged with a non cytotoxic LPS (100 ng/mL) + IFN-γ (600 U/mL) concentration. In our experimental model, main carnosine beneficial effects were: (1) the modulation of nitric oxide production and metabolism; (2) the amelioration of the macrophage energy state; (3) the decrease of the expressions of pro-oxidant enzymes (Nox-2, Cox-2) and of the lipid peroxidation product malondialdehyde; (4) the restoration and/or increase of the expressions of antioxidant enzymes (Gpx1, SOD-2 and Cat); (5) the increase of the transforming growth factor-ß1 (TGF-ß1) and the down-regulation of the expressions of interleukins 1ß and 6 (IL-1ß and IL-6) and 6) the increase of the expressions of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). According to these results carnosine is worth being tested in the treatment of diseases characterized by elevated levels of oxidative stress and inflammation (atherosclerosis, cancer, depression, metabolic syndrome, and neurodegenerative diseases).


Asunto(s)
Carnosina/farmacología , Inmunomodulación/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Oxidantes/metabolismo , Animales , Antioxidantes/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Citocinas/metabolismo , Citocinas/farmacología , Metabolismo Energético/efectos de los fármacos , Perfilación de la Expresión Génica , Inmunomodulación/genética , Lipopolisacáridos/inmunología , Activación de Macrófagos/genética , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7
17.
J Cell Physiol ; 234(3): 1978-1986, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30317595

RESUMEN

The study of strial pericytes has gained great interest as they are pivotal for the physiology of stria vascularis. To provide an easily accessible in vitro model, here we described a growth medium-based approach to obtain and cultivate primary bovine cochlear pericytes (BCP) from the stria vascularis of explanted bovine cochleae. We obtained high-quality pericytes in 8-10 days with a > 90% purity after the second passage. Immunocytochemical analysis showed a homogeneous population of cells expressing typical pericyte markers, such as neural/glial antigen 2 (NG2), platelet-derived growth factor receptorß (PDGFRß), α-smooth muscle actin (α-SMA), and negative for the endothelial marker von Willebrand factor. When challenged with tumor necrosis factor or lipopolysaccharide, BCP changed their shape, similarly to human retinal pericytes (HRPC). The sensitivity of BCP to ototoxic drugs was evaluated by challenging with cisplatin or gentamicin for 48 hr. Compared to human retinal endothelial cells and HRPC, cell viability of BCP was significantly lower ( p < 0.05) after the treatment with gentamicin or cisplatin. These data indicate that our protocol provides a simple and reliable method to obtain highly pure strial BCP. Furthermore, BCP are suitable to assess the safety profile of molecules which supposedly exert ototoxic activity, and may represent a valid alternative to in vivo tests.


Asunto(s)
Cóclea/citología , Pericitos/citología , Estría Vascular/citología , Actinas/metabolismo , Animales , Antígenos/metabolismo , Biomarcadores/metabolismo , Bovinos , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular , Cisplatino/toxicidad , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Medios de Cultivo , Evaluación Preclínica de Medicamentos/métodos , Gentamicinas/toxicidad , Técnicas In Vitro , Modelos Biológicos , Ototoxicidad/etiología , Ototoxicidad/metabolismo , Ototoxicidad/patología , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Proteoglicanos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Estría Vascular/efectos de los fármacos , Estría Vascular/metabolismo
18.
J Cell Physiol ; 234(10): 17295-17304, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30770549

RESUMEN

To study the effects of curcumin on human retinal pigment epithelial (RPE) cells exposed to high glucose (HG) insult, we performed in vitro studies on RPE cells cultured both in normal and HG conditions to assess the effects of curcumin on the cell viability, nuclear factor erythroid 2-related factor 2 (Nrf2) expression, HO-1 activity, and ERK1/2 expression. RPE cells exposed to HG insult were treated with curcumin. The cell viability, apoptosis, HO-1 activity, ERK, and Nrf2 expression were evaluated. The data indicated that treatment with curcumin caused a significant decrease in terms of apoptosis. Further, curcumin was able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by HG. The present study demonstrated that curcumin provides protection against HG-induced damage in RPE cells through the activation of Nrf2/HO-1 signaling that involves the ERK pathway, suggesting that curcumin may have therapeutic value in the treatment of diabetic retinopathy.


Asunto(s)
Curcumina/farmacología , Células Epiteliales/efectos de los fármacos , Glucosa/farmacología , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Hemo-Oxigenasa 1/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
19.
J Cell Physiol ; 234(4): 5230-5240, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30374973

RESUMEN

Diabetic retinopathy (DR) is a common microvascular complication of diabetes. Prolonged hyperglycemia stimulates inflammatory pathway characterized by the release of some cytokines leading to the impairment of blood retinal barrier (BRB). NAP exerts a protective effect in various eye diseases, including DR. So far, the role of NAP in the modulation of inflammatory event during early phase of this pathology has not been investigated yet. In the current study, we have studied the retinal protective effect of NAP, injected into the eye, in diabetic rats. NAP treatment exerts a dual effect downregulating interleukin (IL)-1ß and its related receptors and upregulating IL-1Ra expression. We have also tested the role of this peptide in human retinal epithelial cells (ARPE19) cultured on a semipermeable support and exposed to hyperglycemic-inflammatory insult, representing a in vitro model of diabetic macular edema, a clinical manifestation of DR. The results have shown that NAP prevents outer BRB impairment by upregulating the tight junctions. In conclusion, deepened characterization of NAP action mechanism on hyperglycemic-inflammatory damage may be useful to develop a new strategy to prevent retinal damage during DR.


Asunto(s)
Antiinflamatorios/administración & dosificación , Glucemia/metabolismo , Barrera Hematorretinal/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Retinopatía Diabética/patología , Mediadores de Inflamación/metabolismo , Oligopéptidos/administración & dosificación , Animales , Barrera Hematorretinal/metabolismo , Barrera Hematorretinal/patología , Línea Celular , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Retinopatía Diabética/sangre , Retinopatía Diabética/etiología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Inyecciones Intraoculares , Masculino , Permeabilidad , Ratas Sprague-Dawley , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
20.
Pharmacol Res ; 141: 384-391, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30648615

RESUMEN

The dopamine D3 receptor (D3R), in the nucleus accumbens (NAc), plays an important role in alcohol reward mechanisms. The major neuronal type within the NAc is the GABAergic medium spiny neuron (MSN), whose activity is regulated by dopaminergic inputs. We previously reported that genetic deletion or pharmacological blockade of D3R increases GABAA α6 subunit in the ventral striatum. Here we tested the hypothesis that D3R-dependent changes in GABAA α6 subunit in the NAc affect voluntary alcohol intake, by influencing the inhibitory transmission of MSNs. We performed in vivo and ex vivo experiments in D3R knockout (D3R -/-) mice and wild type littermates (D3R +/+). Ro 15-4513, a high affinity α6-GABAA ligand was used to study α6 activity. At baseline, NAc α6 expression was negligible in D3R+/+, whereas it was robust in D3R-/-; other relevant GABAA subunits were not changed. In situ hybridization and qPCR confirmed α6 subunit mRNA expression especially in the NAc. In the drinking-in-the-dark paradigm, systemic administration of Ro 15-4513 inhibited alcohol intake in D3R+/+, but increased it in D3R-/-; this was confirmed by intra-NAc administration of Ro 15-4513 and furosemide, a selective α6-GABAA antagonist. Whole-cell patch-clamp showed peak amplitudes of miniature inhibitory postsynaptic currents in NAc medium spiny neurons higher in D3R-/- compared to D3R+/+; Ro 15-4513 reduced the peak amplitude in the NAc of D3R-/-, but not in D3R+/+. We conclude that D3R-dependent enhanced expression of α6 GABAA subunit inhibits voluntary alcohol intake by increasing GABA inhibition in the NAc.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/genética , Neuronas GABAérgicas/patología , Receptores de Dopamina D3/genética , Receptores de GABA-A/genética , Animales , Consumo Excesivo de Bebidas Alcohólicas/patología , Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Subunidades de Proteína/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA