Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metab Eng ; 60: 97-109, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32220614

RESUMEN

Biotin, thiamine, and lipoic acid are industrially important molecules naturally synthesized by microorganisms via biosynthetic pathways requiring iron-sulfur (FeS) clusters. Current production is exclusively by chemistry because pathway complexity hinders development of fermentation processes. For biotin, the main bottleneck is biotin synthase, BioB, a S-adenosyl methionine-dependent radical enzyme that converts dethiobiotin (DTB) to biotin. BioB overexpression is toxic, though the mechanism remains unclear. We identified single mutations in the global regulator IscR that substantially improve cellular tolerance to BioB overexpression, increasing Escherichia coli DTB-to-biotin biocatalysis by more than 2.2-fold. Based on proteomics and targeted overexpression of FeS-cluster biosynthesis genes, FeS-cluster depletion is the main reason for toxicity. We demonstrate that IscR mutations significantly affect cell viability and improve cell factories for de novo biosynthesis of thiamine by 1.3-fold and lipoic acid by 1.8-fold. We illuminate a novel engineering target for enhancing biosynthesis of complex FeS-cluster-dependent molecules, paving the way for industrial fermentation processes.


Asunto(s)
Biotina/biosíntesis , Proteínas de Escherichia coli/genética , Ingeniería Metabólica/métodos , Tiamina/biosíntesis , Ácido Tióctico/biosíntesis , Factores de Transcripción/genética , Biotina/análogos & derivados , Biotina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Proteómica , Sulfurtransferasas/metabolismo
2.
Curr Opin Biotechnol ; 59: 85-92, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30928842

RESUMEN

Microbial cell factories offer new and sustainable production routes for high-value chemicals. However, identification of high producers within a library of clones remains a challenge. When product formation is coupled to growth, millions of metabolic variants can be effectively interrogated by growth selection, dramatically increasing the throughput of strain evaluation. While growth-coupled selections for cell factories have a long history of success based on metabolite auxotrophies and toxic antimetabolites, such methods are generally restricted to molecules native to their host metabolism. New synthetic biology tools offer the opportunity to rewire cellular metabolism to depend on specific and non-native products for growth.


Asunto(s)
Ingeniería Metabólica , Biología Sintética , Procesos de Crecimiento Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA