Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Breast Cancer Res ; 22(1): 75, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660617

RESUMEN

BACKGROUND: PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression. METHODS: The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in a xenograft mouse model. Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related signaling pathways including EGFR/HER2 and ERα signaling. RESULTS: Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels. PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of cholesterol and fatty acids induced by statins reversed this growth benefit. CONCLUSION: PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo , Animales , Apoptosis/fisiología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis , Proliferación Celular/fisiología , Progresión de la Enfermedad , Femenino , Xenoinjertos , Homeostasis , Humanos , Metabolismo de los Lípidos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Células Tumorales Cultivadas
3.
Mol Pain ; 9: 30, 2013 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-23800232

RESUMEN

This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions.


Asunto(s)
Mutación , Canales Catiónicos TRPV/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Ratas , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética
4.
Nanomaterials (Basel) ; 10(1)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963267

RESUMEN

Radiosensitizing agents are capable of augmenting the damage of ionizing radiation preferentially on cancer cells, thereby increasing the potency and the specificity of radiotherapy. Metal-based nanoparticles have recently gathered ground in radio-enhancement applications, owing to their exceptional competence in amplifying the cell-killing effects of irradiation. Our aim was to examine the radiosensitizing performance of gold nanoparticles (AuNPs) and the chromatin-modifying histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alone and in combination. We observed that the colony-forming capability of cancer cells decreased significantly and the DNA damage, detected by γH2AX immunostaining, was substantially greater after combinational treatments than upon individual drug exposures followed by irradiation. Synergistic radiosensitizing effects of AuNPs and SAHA were proven on various cell lines, including radioresistant A549 and DU-145 cancer cells. 3D cultures often manifest radio- and drug-resistance, nevertheless, AuNPs in combination with SAHA could effectively enhance the potency of irradiation as the number of viable cells decreased significantly when spheroids received AuNP + SAHA prior to radiotherapy. Our results imply that a relaxed chromatin structure induced by SAHA renders the DNA of cancerous cells more susceptible to the damaging effects of irradiation-triggered, AuNP-released reactive electrons. This feature of AuNPs should be exploited in multimodal treatment approaches.

5.
PLoS One ; 12(6): e0179950, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28640864

RESUMEN

There is convincing epidemiological and experimental evidence that capsaicin, a potent natural transient receptor potential cation channel vanilloid member 1 (TRPV1) agonist, has anticancer activity. However, capsaicin cannot be given systemically in large doses, because of its induction of acute pain and neurological inflammation. MRS1477, a dihydropyridine derivative acts as a positive allosteric modulator of TRPV1, if added together with capsaicin, but is ineffective, if given alone. Addition of MRS1477 evoked Ca2+ signals in MCF7 breast cancer cells, but not in primary breast epithelial cells. This indicates that MCF7 cells not only express functional TRPV1 channels, but also produce endogenous TRPV1 agonists. We investigated the effects of MRS1477 and capsaicin on cell viability, caspase-3 and -9 activities and reactive oxygen species production in MCF7 cells. The fraction of apoptotic cells was increased after 3 days incubation with capsaicin (10 µM) paralleled by increased reactive oxygen species production and caspase activity. These effects were even more pronounced, when cells were incubated with MRS1477 (2 µM) either alone or together with CAPS (10 µM). Capsazepine, a TRPV1 blocker, inhibited both the effect of capsaicin and MRS1477. Whole-cell patch clamp recordings revealed that capsaicin-evoked TRPV1-mediated current density levels were increased after 3 days incubation with MRS1477 (2 µM). However, the tumor growth in MCF7 tumor-bearing immunodeficient mice was not significantly decreased after treatment with MRS1477 (10 mg/ kg body weight, i.p., injection twice a week). In conclusion, in view of a putative in vivo treatment with MRS1477 or similar compounds further optimization is required.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Dihidropiridinas/farmacología , Terapia Molecular Dirigida , Canales Catiónicos TRPV/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Capsaicina/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Sci Rep ; 4: 6776, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25345415

RESUMEN

The B6.Cg-Tg(Thy1-YFP)16Jrs/J transgenic mouse strain, widely used to study neuronal development and regeneration, expresses the yellow fluorescent protein (YFP) in the peripheral nerves and the central nervous system under the control of regulatory sequences of the Thy1 gene. The Thy1 (CD90) cell surface glycoprotein is present on many cell types besides neurons, and is known to be involved in cell adhesion, migration and signal transduction. We hypothesized that Thy1-activating conditions could probably activate the truncated Thy1 regulatory sequences used in the Thy1-YFP construct, resulting in YFP transgene expression outside the nervous system. We demonstrated that the stroma of subcutaneous tumours induced by the injection of 4T1 or MC26 carcinoma cells into BALB/c(Thy1-YFP) mice, carrying the same construct, indeed expressed the YFP transgene. In the tumour mass, the yellow-green fluorescent stromal cells were clearly distinguishable from 4T1 carcinoma cells stably transfected with red fluorescent protein. Local inflammation induced by subcutaneous injection of complete Freund's adjuvant, as well as the experimental wound-healing milieu, also triggered YFP fluorescence in both the BALB/c(Thy1-YFP) and B6.Cg-Tg(Thy1-YFP)16Jrs/J mice, pointing to eventual overlapping pathways of wound-healing, inflammation and tumour growth.


Asunto(s)
Diagnóstico por Imagen/métodos , Inflamación/diagnóstico , Neoplasias Experimentales/diagnóstico , Cicatrización de Heridas , Animales , Inflamación/genética , Inflamación/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Imagen Molecular/métodos , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transporte de Proteínas , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Activación Transcripcional , Cicatrización de Heridas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA