Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Med Sci ; 17(2): 214-223, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32038105

RESUMEN

Purpose: Dynamic [11C]-acetate positron emission tomography (PET) can be used to study tissue perfusion and carbon flux simultaneously. In this study, the feasibility of the quantification of prostate cancer aggressiveness using parametric methods assessing [11C]-acetate kinetics was investigated in prostate cancer subjects. The underlying uptake mechanism correlated with [11C]-acetate influx and efflux measured in real-time in vitro in cell culture. Methods: Twenty-one patients with newly diagnosed low-to-moderate risk prostate cancer underwent magnetic resonance imaging (MRI) and dynamic [11C]-acetate PET/CT examinations of the pelvis. Parametric images of K1 (extraction × perfusion), k2 (oxidative metabolism) and VT (=K1/k2, anabolic metabolism defined as carbon retention) were constructed using a one-tissue compartment model with an arterial input function derived from pelvic arteries. Regions of interest (ROIs) of the largest cancer lesion in each patient and normal prostate tissue were drawn using information from MRI (T2 and DWI images), biopsy results, and post-surgical histopathology of whole prostate sections (n=7). In vitro kinetics of [11C]-acetate were studied on DU145 and PC3 cell lines using LigandTracer® White equipment for the measurement of the radioactivity uptake in real-time at 37°C. Results: Mean prostate specific antigen (PSA) was 8.33±3.92 ng/mL and median Gleason Sum 6 (range 5-7). K1, VT and standardized uptake values (SUVs) were significantly higher in cancerous prostate tissues compared to normal ones for all patients (p<0.001), while k2 was not (p=0.26). PSA values correlated to early SUVs (r=0.50, p=0.02) and K1 (r=0.48, p=0.03). Early and late SUVs correlated to VT (r>0.76, p<0.001) and K1 (r>0.64, p<0.005). In vitro studies demonstrated higher extraction and retention (p<0.01) of [11C]-acetate in the more aggressive PC3 cells. Conclusion: Parametric images could be used to visualize the [11C]-acetate kinetics of the prostate cancer exhibiting elevated extraction associated with the cancer aggressiveness. The influx rate of [11C]-acetate studied in cell culture also showed dependence on the cancer aggressiveness associated with elevated lipogenesis. Dynamic [11C]-acetate/PET demonstrated potential for prostate cancer aggressiveness estimation using parametric-based K1 and VT values.


Asunto(s)
Acetatos/química , Ciclo del Carbono/fisiología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/fisiopatología , Anciano , Humanos , Cinética , Masculino , Persona de Mediana Edad
2.
Mol Pharm ; 16(3): 995-1008, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30608701

RESUMEN

Designed ankyrin repeat proteins (DARPins) are small engineered scaffold proteins that can be selected for binding to desirable molecular targets. High affinity and small size of DARPins render them promising probes for radionuclide molecular imaging. However, detailed knowledge on many factors influencing their imaging properties is still lacking. We have evaluated two human epidermal growth factor 2 (HER2)-specific DARPins with different size and binding properties. DARPins 9_29-H6 and G3-H6 were radiolabeled with iodine-125 and tricarbonyl technetium-99m and evaluated in vitro. A side-by-side comparison of biodistribution and tumor targeting was performed. HER2-specific tumor accumulation of G3-H6 was demonstrated. A combination of smaller size and higher affinity resulted in a higher tumor uptake of G3-H6 in comparison to 9_29-H6. Technetium-99m labeled G3-H6 demonstrated a better biodistribution profile than 9_29-H6, with several-fold lower uptake in liver. Radioiodinated G3-H6 showed the best tumor-to-organ ratios. The combined effect of affinity, molecular weight, scaffold composition, and nonresidualizing properties of iodine label provided radioiodinated G3-H6 with high clinical potential for imaging of HER2.


Asunto(s)
Repetición de Anquirina , Ancirinas/clasificación , Ancirinas/farmacocinética , Radioisótopos de Yodo/farmacocinética , Neoplasias/diagnóstico por imagen , Receptor ErbB-2/metabolismo , Tecnecio/farmacocinética , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Molecular , Neoplasias/patología , Unión Proteica , Cintigrafía , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Br J Haematol ; 180(6): 808-820, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29468712

RESUMEN

Based on their mechanisms-of-action, CD20 monoclonal antibodies (mAbs) are grouped into Type I [complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC)] and Type II [programmed cell death (PCD) and ADCC] mAbs. We generated 17 new hybridomas producing CD20 mAbs of different isotypes and determined unique heavy and light chain sequence pairs for 13 of them. We studied their epitope binding, binding kinetics and structural properties and investigated their predictive value for effector functions, i.e. PCD, CDC and ADCC. Peptide mapping and CD20 mutant screens revealed that 10 out of these 11 new mAbs have an overlapping epitope with the prototypic Type I mAb rituximab, albeit that distinct amino acids of the CD20 molecule contributed differently. Binding kinetics did not correlate with the striking differences in CDC activity among the mIgG2c mAbs. Interestingly, chimerization of mAb m1 resulted in a mAb displaying both Type I and II characteristics. PCD induction was lost upon introduction of a mutation in the framework of the heavy chain affecting the elbow angle, supporting that structural changes within this region can affect functional activities of CD20 mAbs. Together, these new CD20 mAbs provide further insights in the properties dictating the functional efficacy of CD20 mAbs.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antígenos CD20/inmunología , Proteínas del Sistema Complemento/inmunología , Epítopos/inmunología , Anticuerpos Monoclonales de Origen Murino/genética , Citotoxicidad Celular Dependiente de Anticuerpos/genética , Línea Celular , Mapeo Epitopo , Epítopos/genética , Humanos
4.
Anal Chem ; 89(24): 13212-13218, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29160688

RESUMEN

Cellular receptor activity is often controlled through complex mechanisms involving interactions with multiple molecules, which can be soluble ligands and/or other cell surface molecules. In this study, we combine a fluorescence-based technology for real-time interaction analysis with fluorescence quenching to create a novel time-resolved proximity assay to study protein-receptor interactions on living cells. This assay extracts the binding kinetics and affinity for two proteins if they bind in proximity on the cell surface. One application of real-time proximity interaction analysis is to study relative levels of receptor dimerization. The method was primarily evaluated using the HER2 binding antibodies Trastuzumab and Pertuzumab and two EGFR binding antibodies including Cetuximab. Using Cetuximab and Trastuzumab, proximity of EGFR and HER2 was investigated before and after treatment of cells with the tyrosine-kinase inhibitor Gefitinib. Treated cells displayed 50% increased proximity signal, whereas the binding characteristics of the two antibodies were not significantly affected, implying an increase in the EGFR-HER2 dimer level. These results demonstrate that real-time proximity interaction analysis enables determination of the interaction rate constants and affinity of two ligands while simultaneously quantifying their relative colocalization on living cells.


Asunto(s)
Receptor ErbB-2/análisis , Receptor ErbB-2/química , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/farmacología , Supervivencia Celular , Cetuximab/química , Cetuximab/farmacología , Receptores ErbB/análisis , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Gefitinib/química , Gefitinib/farmacología , Humanos , Ligandos , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Factores de Tiempo , Trastuzumab/química , Trastuzumab/farmacología , Células Tumorales Cultivadas
5.
Mol Pharm ; 13(11): 3676-3687, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27529191

RESUMEN

Overexpression of the enzyme carbonic anhydrase IX (CAIX) is documented for chronically hypoxic malignant tumors as well as for normoxic renal cell carcinoma. Radionuclide molecular imaging of CAIX would be useful for detection of hypoxic areas in malignant tumors, for patients' stratification for CAIX-targeted therapies, and for discrimination of primary malignant and benign renal tumors. Earlier, we have reported feasibility of in vivo radionuclide based imaging of CAIX expressing tumors using Affibody molecules, small affinity proteins based on a nonimmunoglobulin scaffold. In this study, we compared imaging properties of several anti-CAIX Affibody molecules having identical scaffold parts and competing for the same epitope on CAIX, but having different binding paratopes. Four variants were labeled using residualizing 99mTc and nonresidualizing 125I labels. All radiolabeled variants demonstrated high-affinity detection of CAIX-expressing cell line SK-RC-52 in vitro and specific accumulation in SK-RC-52 xenografts in vivo. 125I-labeled conjugates demonstrated much lower radioactivity uptake in kidneys but higher radioactivity concentration in blood compared with 99mTc-labeled counterparts. Although all variants cleared rapidly from blood and nonspecific compartments, there was noticeable difference in their biodistribution. The best variant for imaging of expression of CAIX in disseminated cancer was 99mTc-(HE)3-ZCAIX:2 providing tumor uptake of 16.3 ± 0.9% ID/g and tumor-to-blood ratio of 44 ± 7 at 4 h after injection. For primary renal cell carcinoma, the most promising imaging candidate was 125I-ZCAIX:4 providing tumor-kidney ratio of 2.1 ± 0.5. In conclusion, several clones of scaffold proteins should be evaluated to select the best variant for development of an imaging probe with optimal sensitivity for the intended application.


Asunto(s)
Anhidrasa Carbónica IX/metabolismo , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/metabolismo , Animales , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos BALB C , Radiofármacos/análisis
6.
Elife ; 122024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363283

RESUMEN

The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.


Asunto(s)
Proteínas del Tejido Nervioso , Proteínas de Unión al ARN , Animales , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Mamíferos/genética
7.
Anal Bioanal Chem ; 405(4): 1171-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23151655

RESUMEN

Unregulated growth promoter use in food-producing animals is an issue of concern both from food safety and animal welfare perspectives. However, the monitoring of such practices is analytically challenging due to the concerted actions of users to evade detection. Techniques based on the monitoring of biological responses to exogenous administrations have been proposed as more sensitive methods to identify treated animals. This study has, for the first time, profiled plasma proteome responses in bovine animals to treatment with nortestosterone decanoate and 17ß-oestradiol benzoate, followed by dexamethasone administration. Two-dimensional fluorescence differential in-gel electrophoresis analysis revealed a series of hepatic and acute-phase proteins within plasma whose levels were up- or down-regulated within phases of the treatment regime. Surface plasmon resonance (SPR) immuno-assays were developed to quantify responses of identified protein markers during the experimental treatment study with a view to developing methods which can be used as screening tools for growth promoter abuse detection. SPR analysis demonstrated the potential for plasma proteins to be used as indicative measures of growth promoter administrations and concludes that the sensitivity and robustness of any detection approach based on plasma proteome analysis would benefit from examination of a range of proteins representative of diverse biological processes rather being reliant on specific individual markers.


Asunto(s)
Proteínas Sanguíneas/química , Bovinos/crecimiento & desarrollo , Sustancias de Crecimiento/administración & dosificación , Proteómica/métodos , Resonancia por Plasmón de Superficie/métodos , Animales , Biomarcadores/sangre , Biomarcadores/química , Proteínas Sanguíneas/metabolismo , Bovinos/sangre , Dexametasona/administración & dosificación , Electroforesis en Gel Bidimensional , Estradiol/administración & dosificación , Femenino , Masculino , Nandrolona/administración & dosificación
8.
Transl Neurodegener ; 10(1): 38, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34579778

RESUMEN

BACKGROUND: Amyloid-ß (Aß) immunotherapy is a promising therapeutic strategy in the fight against Alzheimer's disease (AD). A number of monoclonal antibodies have entered clinical trials for AD. Some of them have failed due to the lack of efficacy or side-effects, two antibodies are currently in phase 3, and one has been approved by FDA. The soluble intermediate aggregated species of Aß, termed oligomers and protofibrils, are believed to be key pathogenic forms, responsible for synaptic and neuronal degeneration in AD. Therefore, antibodies that can strongly and selectively bind to these soluble intermediate aggregates are of great diagnostic and therapeutic interest. METHODS: We designed and recombinantly produced a hexavalent antibody based on mAb158, an Aß protofibril-selective antibody. The humanized version of mAb158, lecanemab (BAN2401), is currently in phase 3 clinical trials for the treatment of AD. The new designs involved recombinantly fusing single-chain fragment variables to the N-terminal ends of mAb158 antibody. Real-time interaction analysis with LigandTracer and surface plasmon resonance were used to evaluate the kinetic binding properties of the generated antibodies to Aß protofibrils. Different ELISA setups were applied to demonstrate the binding strength of the hexavalent antibody to Aß aggregates of different sizes. Finally, the ability of the antibodies to protect cells from Aß-induced effects was evaluated by MTT assay. RESULTS: Using real-time interaction analysis with LigandTracer, the hexavalent design promoted a 40-times enhanced binding with avidity to protofibrils, and most of the added binding strength was attributed to the reduced rate of dissociation. Furthermore, ELISA experiments demonstrated that the hexavalent design also had strong binding to small oligomers, while retaining weak and intermediate binding to monomers and insoluble fibrils. The hexavalent antibody also reduced cell death induced by a mixture of soluble Aß aggregates. CONCLUSION: We provide a new antibody design with increased valency to promote binding avidity to an enhanced range of sizes of Aß aggregates. This approach should be general and work for any aggregated protein or repetitive target.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Amiloide , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos Monoclonales , Ratones , Ratones Transgénicos
9.
MAbs ; 12(1): 1792673, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32744151

RESUMEN

Based on their mechanism of action, two types of anti-CD20 antibodies are distinguished: Type I, which efficiently mediate complement-dependent cytotoxicity, and Type II, which instead are more efficient in inducing direct cell death. Several molecular characteristics of these antibodies have been suggested to underlie these different biological functions, one of these being the manner of binding to CD20 expressed on malignant B cells. However, the exact binding model on cells is unclear. In this study, the binding mechanism of the Type I therapeutic antibodies rituximab (RTX) and ofatumumab (OFA) and the Type II antibody obinutuzumab (OBI) were established by real-time interaction analysis on live cells. It was found that the degree of bivalent stabilization differed for the antibodies: OFA was stabilized the most, followed by RTX and then OBI, which had the least amount of bivalent stabilization. Bivalency inversely correlated with binding dynamics for the antibodies, with OBI displaying the most dynamic binding pattern, followed by RTX and OFA. For RTX and OBI, bivalency and binding dynamics were concentration dependent; at higher concentrations the interactions were more dynamic, whereas the percentage of antibodies that bound bivalent was less, resulting in concentration-dependent apparent affinities. This was barely noticeable for OFA, as almost all molecules bound bivalently at the tested concentrations. We conclude that the degree of bivalent binding positively correlates with the complement recruiting capacity of the investigated CD20 antibodies.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Linfocitos B/inmunología , Neoplasias Hematológicas/inmunología , Rituximab , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Linfocitos B/patología , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta Inmunológica , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/patología , Humanos , Células K562 , Rituximab/inmunología , Rituximab/farmacología
10.
Front Immunol ; 11: 609941, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505398

RESUMEN

Monoclonal antibodies directed against the CD20 surface antigen on B cells are widely used in the therapy of B cell malignancies. Upon administration, the antibodies bind to CD20 expressing B cells and induce their depletion via cell- and complement-dependent cytotoxicity or by induction of direct cell killing. The three antibodies currently most often used in the clinic are Rituximab (RTX), Ofatumumab (OFA) and Obinutuzumab (OBI). Even though these antibodies are all of the human IgG1 subclass, they have previously been described to vary considerably in the effector functions involved in therapeutic B cell depletion, especially in regards to complement activation. Whereas OFA is known to strongly induce complement-dependent cytotoxicity, OBI is described to be far less efficient. In contrast, the role of complement in RTX-induced B cell depletion is still under debate. Some of this dissent might come from the use of different in vitro systems for characterization of antibody effector functions. We therefore set out to systematically compare antibody as well as C1q binding and complement-activation by RTX, OFA and OBI on human B cell lines that differ in expression levels of CD20 and complement-regulatory proteins as well as human primary B cells. Applying real-time interaction analysis, we show that the overall strength of C1q binding to live target cells coated with antibodies positively correlated with the degree of bivalent binding for the antibodies to CD20. Kinetic analysis revealed that C1q exhibits two binding modes with distinct affinities and binding stabilities, with exact numbers varying both between antibodies and cell lines. Furthermore, complement-dependent cell killing by RTX and OBI was highly cell-line dependent, whereas the superior complement-dependent cytotoxicity by OFA was independent of the target B cells. All three antibodies were able to initiate deposition of C3b on the B cell surface, although to varying extent. This suggests that complement activation occurs but might not necessarily lead to induction of complement-dependent cytotoxicity. This activation could, however, initiate complement-dependent phagocytosis as an alternative mechanism of therapeutic B cell depletion.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antígenos CD20/metabolismo , Antineoplásicos Inmunológicos/farmacología , Linfocitos B/efectos de los fármacos , Activación de Complemento/efectos de los fármacos , Complemento C1q/metabolismo , Linfoma de Células B/tratamiento farmacológico , Rituximab/farmacología , Anticuerpos Monoclonales Humanizados/metabolismo , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Antígenos CD20/inmunología , Antineoplásicos Inmunológicos/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Sitios de Unión de Anticuerpos , Complemento C3b/metabolismo , Citotoxicidad Inmunológica/efectos de los fármacos , Humanos , Células K562 , Cinética , Linfoma de Células B/inmunología , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Fagocitosis/efectos de los fármacos , Unión Proteica , Rituximab/metabolismo
11.
FEBS Lett ; 594(15): 2406-2420, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32473599

RESUMEN

The interaction between the Shiga toxin B-subunit (STxB) and its globotriaosylceramide receptor (Gb3) has a high potential for being exploited for targeted cancer therapy. The primary goal of this study was to evaluate the capacity of STxB to carry small molecules and proteins as cargo into cells. For this purpose, an assay was designed to provide real-time information about the StxB-Gb3 interaction as well as the dynamics and mechanism of the internalization process. The assay revealed the ability to distinguish the process of binding to the cell surface from internalization and presented the importance of receptor and STxB clustering for internalization. The overall setup demonstrated that the binding mechanism is complex, and the concept of affinity is difficult to apply. Hence, time-resolved methods, providing detailed information about the interaction of STxB with cells, are critical for the optimization of intracellular delivery.


Asunto(s)
Bioensayo , Portadores de Fármacos , Neoplasias/metabolismo , Toxinas Shiga , Trihexosilceramidas/metabolismo , Transporte Biológico Activo , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Células HT29 , Humanos , Células K562 , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Toxinas Shiga/farmacocinética , Toxinas Shiga/farmacología
12.
Biotechnol Prog ; 35(3): e2775, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30629859

RESUMEN

High capacity magnetic protein A agarose beads, LOABeads PrtA, were used in the development of a new process for affinity purification of monoclonal antibodies (mAbs) from non-clarified CHO cell broth using a pilot-scale magnetic separator. The LOABeads had a maximum binding capacity of 65 mg/mL and an adsorption capacity of 25-42 mg IgG/mL bead in suspension for an IgG concentration of 1 to 8 g/L. Pilot-scale separation was initially tested in a mAb capture step from 26 L clarified harvest. Small-scale experiments showed that similar mAb adsorptions were obtained in cell broth containing 40 × 106 cells/mL as in clarified supernatant. Two pilot-scale purification runs were then performed on non-clarified cell broth from fed-batch runs of 16 L, where a rapid mAb adsorption ≥96.6% was observed after 1 h. This process using 1 L of magnetic beads had an overall mAb yield of 86% and 16 times concentration factor. After this single protein A capture step, the mAb purity was similar to the one obtained by column chromatography, while the host cell protein content was very low, <10 ppm. Our results showed that this magnetic bead mAb purification process, using a dedicated pilot-scale separation device, was a highly efficient single step, which directly connected the culture to the downstream process without cell clarification. Purification of mAb directly from non-clarified cell broth without cell separation can provide significant savings in terms of resources, operation time, and equipment, compared to legacy procedure of cell separation followed by column chromatography step. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2775, 2019.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Células CHO/metabolismo , Cromatografía de Afinidad/métodos , Magnetismo/métodos , Proteína Estafilocócica A/química , Adsorción , Animales , Anticuerpos Monoclonales/química , Cromatografía de Afinidad/instrumentación , Cricetulus , Concentración de Iones de Hidrógeno , Magnetismo/instrumentación
13.
Eur J Pharm Biopharm ; 134: 37-48, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30408518

RESUMEN

ADAPTs are small engineered non-immunoglobulin scaffold proteins, which have demonstrated very promising features as vectors for radionuclide tumour targeting. Radionuclide imaging of human epidermal growth factor 2 (HER2) expression in vivo might be used for stratification of patients for HER2-targeting therapies. ADAPT6, which specifically binds to HER2, has earlier been shown to have very promising features for in vivo targeting of HER2 expressing tumours. In this study we tested the hypothesis that dimerization of ADAPT6 would increase the apparent affinity to HER2 and accordingly improve tumour targeting. To find an optimal molecular design of dimers, a series of ADAPT dimers with different linkers, -SSSG- (DiADAPT6L1), -(SSSG)2- (DiADAPT6L2), and -(SSSG)3- (DiADAPT6L3) was evaluated. Dimers in combination with optimal linker lengths demonstrated increased apparent affinity to HER2. The best variants, DiADAPT6L2 and DiADAPT6L3 were site-specifically labelled with 111In and 125I, and compared with a monomeric ADAPT6 in mice bearing HER2-expressing tumours. Despite higher affinity, both dimers had lower tumour uptake and lower tumour-to-organ ratios compared to the monomer. We conclude that improved affinity of a dimeric form of ADAPT does not compensate the disadvantage of increased size. Therefore, increase of affinity should be obtained by affinity maturation and not by dimerization.


Asunto(s)
Proteínas Bacterianas/química , Imagen Molecular/métodos , Sondas Moleculares/química , Neoplasias/diagnóstico por imagen , Receptor ErbB-2/análisis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/farmacocinética , Línea Celular Tumoral , Humanos , Radioisótopos de Indio/química , Radioisótopos de Yodo/química , Ratones , Ratones Desnudos , Sondas Moleculares/genética , Sondas Moleculares/aislamiento & purificación , Sondas Moleculares/farmacocinética , Neoplasias/patología , Unión Proteica , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Cintigrafía/métodos , Receptor ErbB-2/metabolismo , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Nucl Med ; 59(1): 93-99, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28864631

RESUMEN

Visualization of cancer-associated alterations of molecular phenotype using radionuclide imaging is a noninvasive approach to stratifying patients for targeted therapies. The engineered albumin-binding domain-derived affinity protein (ADAPT) is a promising tracer for radionuclide molecular imaging because of its small size (6.5 kDa), which satisfies the precondition for efficient tumor penetration and rapid clearance. Previous studies demonstrated that the human epidermal growth factor receptor type 2 (HER2)-targeting ADAPT6 labeled with radiometals at the N terminus is able to image HER2 expression in xenografts a few hours after injection. The aim of this study was to evaluate whether the use of a nonresidualizing label or placement of the labels at the C terminus would further improve the targeting properties of ADAPT6. Methods: Two constructs, Cys2-ADAPT6 and Cys59-ADAPT6, having the (HE)3DANS sequence at the N terminus were produced and site-specifically labeled using 111In-DOTA or 125I-iodo-((4-hydroxyphenyl)ethyl) maleimide (HPEM). The conjugates were compared in vitro and in vivo. HER2-targeting properties and biodistribution were evaluated in BALB/C nu/nu mice bearing ovarian carcinoma cell (SKOV-3) xenografts. Results: Specific HER2 binding and high affinity were preserved after labeling. Both Cys2-ADAPT6 and Cys59-ADAPT6 were internalized slowly by HER2-expressing cancer cells. Depending on the label position, uptake at 4 h after injection varied from 10% to 22% of the injected dose per gram of tumor tissue. Regardless of terminus position, the 125I-HPEM label provided more than 140-fold lower renal uptake than the 111In-DOTA label at 4 after injection. The tumor-to-organ ratios were, in contrast, higher for both of the 111In-DOTA-labeled ADAPT variants in other organs. Tumor-to-blood ratios for 111In-labeled Cys2-ADAPT6 and Cys59-ADAPT6 did not differ significantly (250-280), but 111In-DOTA-Cys59-ADAPT6 provided significantly higher tumor-to-lung, tumor-to-liver, tumor-to-spleen, and tumor-to-muscle ratios. Radioiodinated variants had similar tumor-to-organ ratios, but 125I-HPEM-Cys59-ADAPT6 had significantly higher tumor uptake and a higher tumor-to-kidney ratio. Conclusion: Residualizing properties of the label strongly influence the targeting properties of ADAPT6. The position of the radiolabel influences targeting as well, although to a lesser extent. Placement of a label at the C terminus yields the best biodistribution features for both radiometal and radiohalogen labels. Low renal retention of the radioiodine label creates a precondition for radionuclide therapy using 131I-labeled HPEM-Cys59-ADAPT6.


Asunto(s)
Proteínas Bacterianas/química , Marcaje Isotópico , Ingeniería de Proteínas , Radioisótopos/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacocinética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Receptor ErbB-2/metabolismo , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Distribución Tisular
15.
Sci Rep ; 8(1): 2998, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445216

RESUMEN

HER2 transmembrane receptor is an important target in immunotherapy treatment of breast and gastroesophageal cancer. Molecular imaging of HER2 expression may provide essential prognostic and predictive information concerning disseminated cancer and aid in selection of an optimal therapy. Radiolabeled low molecular weight peptide ligands are particularly attractive as probes for molecular imaging, since they reach and bind to the target and clear from non-target organs and blood stream faster than bulky antibodies. In this study, we evaluated a potential HER2-imaging probe, an A9 nonapeptide, derived from the trastuzumab-Fab portion. Its cellular uptake was investigated by mass spectrometry analysis of the cytoplasmic cellular extracts. Moreover, based on in-silico modeling, DTPA chelator was conjugated to N-terminus of A9. 111In-labeled A9 demonstrated nanomolar affinity to HER2-expressing BT474 cells and favorable biodistribution profile in NMRI mice. This study suggests that the peptide A9 represents a good lead candidate for development of molecular probe, to be used for imaging purposes and for the delivery of cytotoxic agents.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Sondas Moleculares/metabolismo , Péptidos/metabolismo , Radioinmunodetección/métodos , Receptor ErbB-2/inmunología , Animales , Animales no Consanguíneos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Ratones , Sondas Moleculares/genética , Péptidos/genética , Unión Proteica , Trastuzumab/genética
16.
Sci Rep ; 8(1): 5220, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581529

RESUMEN

Ischemia reperfusion injury is one of the major complications responsible for delayed graft function in kidney transplantation. Applications to reduce reperfusion injury are essential due to the widespread use of kidneys from deceased organ donors where the risk for delayed graft function is especially prominent. We have recently shown that coating of inflamed or damaged endothelial cells with a unique heparin conjugate reduces thrombosis and leukocyte recruitment. In this study we evaluated the binding capacity of the heparin conjugate to cultured human endothelial cells, to kidneys from brain-dead porcine donors, and to murine kidneys during static cold storage. The heparin conjugate was able to stably bind cultured endothelial cells with high avidity, and to the renal vasculature of explanted kidneys from pigs and mice. Treatment of murine kidneys prior to transplantation reduced platelet deposition and leukocyte infiltration 24 hours post-transplantation, and significantly improved graft function. The present study thus shows the benefits of enhanced protection of the renal vasculature during cold storage, whereby increasing the antithrombotic and anti-adhesive properties of the vascular endothelium yields improved renal function early after transplantation.


Asunto(s)
Endotelio Vascular/crecimiento & desarrollo , Heparina/administración & dosificación , Trasplante de Riñón , Riñón/crecimiento & desarrollo , Animales , Muerte Encefálica/patología , Criopreservación , Funcionamiento Retardado del Injerto/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/trasplante , Supervivencia de Injerto , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Ratones , Venas Renales/efectos de los fármacos , Venas Renales/crecimiento & desarrollo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control , Porcinos , Donantes de Tejidos
17.
Sci Rep ; 7(1): 14780, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116215

RESUMEN

ABD-Derived Affinity Proteins (ADAPTs) is a novel class of engineered scaffold proteins derived from an albumin-binding domain of protein G. The use of ADAPT6 derivatives as targeting moiety have provided excellent preclinical radionuclide imaging of human epidermal growth factor 2 (HER2) tumor xenografts. Previous studies have demonstrated that selection of nuclide and chelator for its conjugation has an appreciable effect on imaging properties of scaffold proteins. In this study we performed a comparative evaluation of the anti-HER2 ADAPT having an aspartate-glutamate-alanine-valine-aspartate-alanine-asparagine-serine (DEAVDANS) N-terminal sequence and labeled at C-terminus with 99mTc using a cysteine-containing peptide based chelator, glycine-serine-serine-cysteine (GSSC), and a similar variant labeled with 111In using a maleimido derivative of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. Both 99mTc-DEAVDANS-ADAPT6-GSSC and 111In-DEAVDANS-ADAPT6-GSSC-DOTA accumulated specifically in HER2-expressing SKOV3 xenografts. The tumor uptake of both variants did not differ significantly and average values were in the range of 19-21%ID/g. However, there was an appreciable variation in uptake of conjugates in normal tissues that resulted in a notable difference in the tumor-to-organ ratios. The 111In-DOTA label provided 2-6 fold higher tumor-to-organ ratios than 99mTc-GSSC and is therefore the preferable label for ADAPTs.


Asunto(s)
Radioisótopos de Indio/química , Compuestos de Organotecnecio/química , Receptor ErbB-2/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Humanos
18.
Front Immunol ; 8: 455, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28484455

RESUMEN

Understanding molecular interactions on immune cells is crucial for drug development to treat cancer and autoimmune diseases. When characterizing molecular interactions, the use of a relevant living model system is important, as processes such as receptor oligomerization and clustering can influence binding patterns. We developed a protocol to enable time-resolved analysis of ligand binding to receptors on living suspension cells. Different suspension cell lines and weakly adhering cells were tethered to Petri dishes with the help of a biomolecular anchor molecule, and antibody binding was analyzed using LigandTracer. The protocol and assay described in this report were used to characterize interactions involving eight cell lines. Experiments were successfully conducted in three different laboratories, demonstrating the robustness of the protocol. For various antibodies, affinities and kinetic rate constants were obtained for binding to CD20 on both Daudi and Ramos B-cells, the T-cell co-receptor CD3 on Jurkat cells, and the Fcγ receptor CD32 on transfected HEK293 cells, respectively. Analyzing the binding of Rituximab to B-cells resulted in an affinity of 0.7-0.9 nM, which is similar to values reported previously for living B-cells. However, we observed a heterogeneous behavior for Rituximab interacting with B-cells, which to our knowledge has not been described previously. The understanding of complex interactions will be facilitated with the possibility to characterize binding processes in real-time on living immune cells. This provides the chance to broaden the understanding of how binding kinetics relate to biological function.

19.
Sci Rep ; 7(1): 5961, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28729680

RESUMEN

Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111In-labelled DOTA-conjugated ZEGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-ZEGFR:2377. DOTA-ZEGFR:2377 was labelled with 57Co (T1/2 = 271.8 d), 55Co (T1/2 = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68Ga (T1/2 = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57Co was used in animal studies. Both 57Co-DOTA-ZEGFR:2377 and 68Ga-DOTA-ZEGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-ZEGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57Co-DOTA-ZEGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68Ga-DOTA-ZEGFR:2377. The results of this study suggest that the positron-emitting cobalt isotope 55Co would be an optimal label for DOTA-ZEGFR:2377 and further development should concentrate on this radionuclide as a label.


Asunto(s)
Complejos de Coordinación/química , Receptores ErbB/metabolismo , Compuestos Heterocíclicos con 1 Anillo/química , Imagenología Tridimensional , Radioisótopos/química , Proteínas Recombinantes de Fusión/metabolismo , Animales , Línea Celular Tumoral , Femenino , Ratones Endogámicos BALB C , Ratones Desnudos , Tomografía de Emisión de Positrones , Distribución Tisular , Tomografía Computarizada por Rayos X , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Colloid Interface Sci ; 289(1): 26-35, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16009213

RESUMEN

In this investigation, the structure, stability, and orientation of bovine serum albumin (BSA) adsorbed onto silica particles were studied using differential scanning calorimetry (DSC) and limited proteolysis in combination with mass spectrometry (MS). DSC gave information on the overall structural stability of BSA while limited proteolysis was used to probe the accessibility of enzymatic cleavage sites, thereby yielding information on the orientation and structure of BSA adsorbed to silica surfaces. Thermal investigation of BSA in various buffers, both free in solution and in the adsorbed state, showed that solutes that surround the protein played an important role with respect to the overall structural stability and the structural heterogeneity of BSA. Limited proteolysis with trypsin and chymotrypsin indicated that BSA in the adsorbed state is oriented with domain 2 facing the silica surface. Also, upon adsorption, no additional cleavage sites were exposed. The combination of the results presented in this study implied that BSA molecules adsorbed onto silica particles were significantly reduced in their structural stability, but not to an extent that internal residues within the native structure became fully exposed to the solution.


Asunto(s)
Albúmina Sérica Bovina/química , Dióxido de Silicio/química , Adsorción , Secuencia de Aminoácidos , Animales , Rastreo Diferencial de Calorimetría/métodos , Bovinos , Quimotripsina/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Sensibilidad y Especificidad , Relación Estructura-Actividad , Propiedades de Superficie , Temperatura , Tripsina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA