RESUMEN
Subcutaneous delivery of monoclonal antibody therapeutics is often preferred to intravenous delivery due to better patient compliance and overall lower cost to the healthcare system. However, the systemic absorption of biologics dosed subcutaneously is often incomplete. The aim of this work was to describe a human bioavailability prediction method for monoclonal antibodies delivered subcutaneously that utilizes intravenous pharmacokinetic parameters as input. A two-compartment pharmacokinetic model featuring a parallel-competitive absorption pathway and a presystemic metabolism pathway was employed. A training data set comprised 19 monoclonal antibodies (geometric mean bioavailability of 68%), with previously reported human pharmacokinetic parameters, while a validation set included data compiled from 5 commercial drug products (geometric mean bioavailability of 69%). A single fitted absorption rate constant, paired with compound-specific estimates of presystemic metabolism rate proportional to compound-specific systemic clearance parameters, resulted in calculations of human subcutaneous bioavailability closely mimicking clinical data in the training data set with a root-mean-square error of 5.5%. Application of the same approach to the validation data set resulted in predictions characterized by 12.6% root-mean-square error. Factors that may have impacted the prediction accuracy include a limited number of validation data set compounds and an uncertainty in the absorption rate, which were subsequently discussed. The predictive method described herein provides an initial estimate of the subcutaneous bioavailability based exclusively on pharmacokinetic parameters available from intravenous dosing.
Asunto(s)
Anticuerpos Monoclonales , Disponibilidad Biológica , Humanos , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/administración & dosificación , Inyecciones Subcutáneas , Modelos BiológicosRESUMEN
PURPOSE: Initial dose of chemotherapy is planned based on body surface area, which does not take body composition into account. We studied the association between fat mass (kg and relative to total body weight) as well as lean mass (kg and relative to total body weight) and toxicity-induced modifications of treatment in breast cancer patients receiving chemotherapy. METHODS: In an observational study among 172 breast cancer patients (stage I-IIIB) in the Netherlands, we assessed body composition using dual-energy X-ray scans. Information on toxicity-induced modifications of treatment, defined as dose reductions, cycle delays, regimen switches, or premature termination of chemotherapy, was abstracted from medical records. Adjusted hazard ratios and 95% confidence intervals (95% CI) were calculated to assess associations between body composition and the risk of toxicity-induced modifications of treatment. RESULTS: In total, 95 out of 172 (55%) patients experienced toxicity-induced modifications of treatment. Higher absolute and relative fat mass were associated with higher risk of these modifications (HR 1.14 per 5 kg; 95% CI 1.04-1.25 and HR 1.21 per 5%; 95% CI 1.05-1.38, respectively). A higher relative lean mass was associated with a lower risk of modifications (HR 0.83 per 5%; 95% CI 0.72-0.96). There was no association between absolute lean mass and risk of toxicity-induced modifications of treatment. CONCLUSIONS: A higher absolute and a higher relative fat mass was associated with an increased risk of toxicity-induced modifications of treatment. Absolute lean mass was not associated with risk of these treatment modifications, while higher relative lean mass associated with lower risk of modifications. These data suggest that total fat mass importantly determines the risk of toxicities during chemotherapy in breast cancer patients.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Composición Corporal , Neoplasias de la Mama/terapia , Absorciometría de Fotón , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Índice de Masa Corporal , Neoplasias de la Mama/patología , Quimioterapia Adyuvante/efectos adversos , Quimioterapia Adyuvante/métodos , Relación Dosis-Respuesta a Droga , Sustitución de Medicamentos/estadística & datos numéricos , Femenino , Humanos , Mastectomía , Persona de Mediana Edad , Terapia Neoadyuvante/efectos adversos , Terapia Neoadyuvante/métodos , Estadificación de Neoplasias , Países Bajos , Privación de Tratamiento/estadística & datos numéricosRESUMEN
PURPOSE: In this study we evaluated the utility of in-vitro screening tools for predicting the in-vivo behavior of six cyclic peptides with different solubility and permeability properties (BCS class II and III), intended for oral delivery in presence of permeation enhancer Labrasol. METHODS: An in vitro flux assay was used to assess peptide permeation across a biomimetic, lipid-based membrane and in vivo studies in rats were used to determine oral peptide bioavailability in the presence of Labrasol. RESULTS: The in vitro flux was significantly increased for BCS class III peptides, while it significantly decreased or remained unchanged for BCS class II peptides with increasing Labrasol concentrations. The different flux responses were attributed to the combination of reduced effective free peptide concentration and increased membrane permeability in the presence of Labrasol. In vivo studies in male Wistar-Hans rats indicated improved oral bioavailability at different extents for all peptides in presence of Labrasol. On comparing the in vitro and in vivo data, a potential direct correlation for BCS class III peptides was seen but not for BCS class II peptides, due to lower free concentrations of peptides in this class. CONCLUSION: This study assessed the utility of in vitro screening tools for selecting peptides and permeation excipients early in drug product development. Graphical Abstract Graphical Abstract and Figure 1 contains small text.Graphical Abstract text is made larger. The Figure 1 text cannot be made larger.
Asunto(s)
Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Permeabilidad de la Membrana Celular , Química Farmacéutica , Excipientes/química , Glicéridos/química , Membrana Dobles de Lípidos/metabolismo , Masculino , Modelos Biológicos , Péptidos Cíclicos/química , Ratas Wistar , SolubilidadRESUMEN
Despite recent technological advances in drug discovery, the success rate for neurotherapeutics remains alarmingly low compared to treatments for other areas of the body. One of the biggest challenges for delivering therapeutics to the central nervous system (CNS) is the presence of the blood-brain barrier (BBB). In vitro blood-brain barrier models with high predictability are essential to aid in designing parameters for new therapeutics, assess their ability to cross the BBB, and investigate therapeutic strategies that can be employed to enhance transport. Here, we demonstrate the development of a 3D printable hydrogel blood-brain barrier model that mimics the cellular composition and structure of the blood-brain barrier with human brain endothelial cells lining the surface, pericytes in direct contact with the endothelial cells on the abluminal side of the endothelium, and astrocytes in the surrounding printed bulk matrix. We introduce a simple, static printed hemi-cylinder model to determine design parameters such as media selection, co-culture ratios, and cell incorporation timing in a resource-conservative and high-throughput manner. Presence of cellular adhesion junction, VE-Cadherin, efflux transporters, P-glycoprotein (P-gp) and Breast cancer resistance protein (BCRP), and receptor-mediated transporters, Transferrin receptor (TfR) and low-density lipoprotein receptor-related protein 1 (LRP1) were confirmed via immunostaining demonstrating the ability of this model for screening in therapeutic strategies that rely on these transport systems. Design parameters determined in the hemi-cylinder model were translated to a more complex, perfusable vessel model to demonstrate its utility for determining barrier function and assessing permeability to model therapeutic compounds. This 3D-printed blood-brain barrier model represents one of the first uses of projection stereolithography to fabricate a perfusable blood-brain barrier model, enabling the patterning of complex vessel geometries and precise arrangement of cell populations. This model demonstrates potential as a new platform to investigate the delivery of neurotherapeutic compounds and drug delivery strategies through the blood-brain barrier, providing a useful in vitro screening tool in central nervous system drug discovery and development.
Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Impresión Tridimensional , Barrera Hematoencefálica/metabolismo , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/citología , Técnicas de Cocultivo , Hidrogeles/química , Modelos Biológicos , Astrocitos/metabolismo , Astrocitos/citología , Pericitos/metabolismo , Pericitos/citologíaRESUMEN
Over the past decade, there has been an increase in accelerated drug development with successful regulatory approval that has provided rapid access of novel medicines to patients world-wide. This has created the opportunity for the pharmaceutical industry to continuously improve the process of quickly bringing new medicines to patients with unmet medical needs. This can be accomplished through sharing the learnings and advancements in drug development, enhancing regulatory interactions, and collaborating with academics on developing the underlying science to reduce drug development timelines. In this paper, the IQ Consortium - Accelerated Drug Development working group members intend to share recommendations for optimizing strategies that build efficiencies in accelerated pathways for regulatory approval. Information was obtained by surveying member pharmaceutical companies with respect to recent expedited submissions within the past 5 years to gain insights as to which development strategies were successful. The learnings from this analysis are provided, which includes shared learnings in formulation development, stability, analytical methods, manufacturing, and importation testing as well as regulatory considerations. Each of these sections provide a summary illustrating the key data collected as well as a discussion that is aimed to guide pharmaceutical companies on strategies to consider streamlining development activities and expedite the drug to market.
Asunto(s)
Desarrollo de Medicamentos , Industria Farmacéutica , Industria Farmacéutica/métodos , Desarrollo de Medicamentos/métodos , Humanos , Aprobación de Drogas/métodos , Encuestas y Cuestionarios , Preparaciones Farmacéuticas/químicaRESUMEN
Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a key regulator of plasma LDL-cholesterol (LDL-C) and a clinically validated target for the treatment of hypercholesterolemia and coronary artery disease. Starting from second-generation lead structures such as 2, we were able to refine these structures to obtain extremely potent bi- and tricyclic PCSK9 inhibitor peptides. Optimized molecules such as 44 demonstrated sufficient oral bioavailability to maintain therapeutic levels in rats and cynomolgus monkeys after dosing with an enabled formulation. We demonstrated target engagement and LDL lowering in cynomolgus monkeys essentially identical to those observed with the clinically approved, parenterally dosed antibodies. These molecules represent the first report of highly potent and orally bioavailable macrocyclic peptide PCSK9 inhibitors with overall profiles favorable for potential development as once-daily oral lipid-lowering agents. In this manuscript, we detail the design criteria and multiparameter optimization of this novel series of PCSK9 inhibitors.
Asunto(s)
Inhibidores de PCSK9/farmacología , Péptidos Cíclicos/farmacología , Administración Oral , Animales , Disponibilidad Biológica , Cristalografía por Rayos X , Macaca fascicularis , Estructura Molecular , Inhibidores de PCSK9/química , Inhibidores de PCSK9/farmacocinética , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacocinética , Ratas , Relación Estructura-ActividadRESUMEN
There is an active and growing effort occurring in laboratories throughout Africa to research the underpinnings of endemic communicable diseases, many of which are considered "neglected tropical diseases" as defined by the World Health Organization. Across the continent, scientists, doctors, health care workers, and students investigate the in vitro activity of pharmacologically active extracts against known pathogens in hope of discovering new treatments for the diseases that affect the local population. During the summer of 2014, I had the opportunity to visit laboratories in 3 different countries engaged in this area of research through participation in the Merck Fellowship for Global Health (Merck is known as Merck, Sharp & Dohme outside of the United States and Canada.), in which Merck sponsors employees on a short-term sabbatical to work with a global health-focused nonprofit organization. This commentary describes the objectives of the fellowship program, the specific project to which my co-fellow and I contributed, and the story of a subsequent equipment donation effort that was inspired by my individual fellowship experience. It also captures a few of the more notable challenges and opportunities for the scientists in the laboratories we visited. Finally, for the reader who may be curious as to how she or he can contribute, I hope to move you to action by highlighting some of the opportunities for researchers to positively and creatively impact global health from their "home" lab benches and hoods.
Asunto(s)
Salud Global , Humanos , Laboratorios , Enfermedades Desatendidas/epidemiología , Organización Mundial de la SaludRESUMEN
PURPOSE: A positron emission tomography (PET) tracer for the enzyme phosphodiesterase 10A (PDE10A) is desirable to guide the discovery and development of PDE10A inhibitors as potential therapeutics. The preclinical characterization of the PDE10A PET tracer [(11)C]MK-8193 is described. PROCEDURES: In vitro binding studies with [(3)H]MK-8193 were conducted in rat, monkey, and human brain tissue. PET studies with [(11)C]MK-8193 were conducted in rats and rhesus monkeys at baseline and following administration of a PDE10A inhibitor. RESULTS: [(3)H]MK-8193 is a high-affinity, selective PDE10A radioligand in rat, monkey, and human brain tissue. In vivo, [(11)C]MK-8193 displays rapid kinetics, low test-retest variability, and a large specific signal that is displaced by a structurally diverse PDE10A inhibitor, enabling the determination of pharmacokinetic/enzyme occupancy relationships. CONCLUSIONS: [(11)C]MK-8193 is a useful PET tracer for the preclinical characterization of PDE10A therapeutic candidates in rat and monkey. Further evaluation of [(11)C]MK-8193 in humans is warranted.
Asunto(s)
Compuestos Heterocíclicos con 2 Anillos/química , Hidrolasas Diéster Fosfóricas/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono , Femenino , Compuestos Heterocíclicos con 2 Anillos/sangre , Compuestos Heterocíclicos con 2 Anillos/síntesis química , Compuestos Heterocíclicos con 2 Anillos/farmacocinética , Humanos , Macaca mulatta , Masculino , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacología , Ratas , Factores de TiempoRESUMEN
We have been focused on identifying a structurally different next generation inhibitor to MK-5172 (our Ns3/4a protease inhibitor currently under regulatory review), which would achieve superior pangenotypic activity with acceptable safety and pharmacokinetic profile. These efforts have led to the discovery of a novel class of HCV NS3/4a protease inhibitors containing a unique spirocyclic-proline structural motif. The design strategy involved a molecular-modeling based approach, and the optimization efforts on the series to obtain pan-genotypic coverage with good exposures on oral dosing. One of the key elements in this effort was the spirocyclization of the P2 quinoline group, which rigidified and constrained the binding conformation to provide a novel core. A second focus of the team was also to improve the activity against genotype 3a and the key mutant variants of genotype 1b. The rational application of structural chemistry with molecular modeling guided the design and optimization of the structure-activity relationships have resulted in the identification of the clinical candidate MK-8831 with excellent pan-genotypic activity and safety profile.
RESUMEN
GPR142 has been identified as a potential glucose-stimulated insulin secretion (GSIS) target for the treatment of type 2 diabetes mellitus (T2DM). A class of triazole GPR142 agonists was discovered through a high throughput screen. The lead compound 4 suffered from poor metabolic stability and poor solubility. Lead optimization strategies to improve potency, efficacy, metabolic stability, and solubility are described. This optimization led to compound 20e, which showed significant reduction of glucose excursion in wild-type but not in GPR142 deficient mice in an oral glucose tolerance test (oGTT) study. These studies provide strong evidence that reduction of glucose excursion through treatment with 20e is GPR142-mediated, and GPR142 agonists could be used as a potential treatment for type 2 diabetes.
RESUMEN
We report the discovery of a benzimidazole series of CYP11B2 inhibitors. Hit-to-lead and lead optimization studies identified compounds such as 32, which displays potent CYP11B2 inhibition, high selectivity versus related CYP targets, and good pharmacokinetic properties in rat and rhesus. In a rhesus pharmacodynamic model, 32 produces dose-dependent aldosterone lowering efficacy, with no apparent effect on cortisol levels.
RESUMEN
Hit-to-lead efforts resulted in the discovery of compound 19, a potent CYP11B2 inhibitor that displays high selectivity vs related CYPs, good pharmacokinetic properties in rat and rhesus, and lead-like physical properties. In a rhesus pharmacodynamic model, compound 19 displays robust, dose-dependent aldosterone lowering efficacy, with no apparent effect on cortisol levels.