Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Conserv Biol ; 36(1): e13850, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34668608

RESUMEN

Management of mangrove ecosystems is complex, given that mangroves are both terrestrial and marine, often cross regional or national boundaries, and are valued by local stakeholders in different ways than they are valued on national and international scales. Thus, mangrove governance has had varying levels of success, analyzed through concepts such as principles of good governance and procedural justice in decision-making. Although there is substantial research on case studies of mangrove management, global comparisons of mangrove governance are lacking. This research aims to fill this gap by comparing relationships among qualities of governance across mangrove social-ecological systems worldwide. Through a systematic literature search and screening process, we identified 65 articles that discussed mangrove governance and conservation. Case studies in these articles, drawn from 39 countries, were categorized as top-down, bottom-up, or comanaged and thematically coded to assess the influence of eight principles of good governance in mangrove conservation success. Across all three governance systems, the principles of legitimacy, fairness, and integration were most important in determining conservation success or failure. These principles are closely related to the concept of procedural justice, highlighting the importance of stakeholder inclusion throughout all stages of mangrove management. Thus, we recommend clearly defined roles for all governance actors, transparent communication of policy development to stakeholders, fairness in both process and outcome, and careful consideration of sustainable access to conservation resources.


Una Revisión Cualitativa de los Principios de Gestión para la Conservación de los Manglares Resumen El manejo de los manglares es complejo dado que son terrestres y marinos, con frecuencia cruzan las fronteras regionales o nacionales y están valorados por los actores de diferentes maneras de cómo son valorados en las escalas nacionales e internacionales. Por lo tanto, la gestión de los manglares ha tenido diferentes niveles de éxito al ser analizados con medidas como los principios de buena gestión de Lockwood et al. (2010) y con conceptos como la justicia procesal (O'Beirne et al. 2020) en la toma de decisiones. Aunque existe una cantidad sustancial de información de estudios de caso del manejo de manglares, existen pocas comparaciones mundiales de la gestión de los manglares. Este trabajo busca cerrar esta brecha mediante la comparación de relaciones entre la calidad de las gestiones en los sistemas socio-ecológicos de manglares a nivel mundial. Identificamos 65 artículos que abordaban la conservación y gestión de los manglares mediante una búsqueda sistemática de la literatura y un proceso de análisis. Los estudios de caso en estos artículos, realizados en 39 países, fueron categorizados como gestión ascendiente, descendiente o de co-manejo y codificados por tema para analizar la influencia de los ocho principios de buena gestión de Lockwood et al. (2010) en el éxito de conservación de los manglares. En los tres sistemas de gestión, los principios de legitimidad, equidad e integración fueron los más importantes para determinar el éxito o fracaso de la conservación. Estos principios están fuertemente relacionados con el concepto de justicia procesal, resaltando la importancia de la inclusión de los actores durante todas las etapas del manejo de los manglares. Por lo tanto, recomendamos que todos los actores gestores tengan papeles claramente definidos, que exista una comunicación transparente del desarrollo de las políticas a los actores, equidad tanto en el proceso como en los resultados y la consideración meticulosa del acceso sustentable a los recursos de conservación.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Exactitud de los Datos , Formulación de Políticas , Justicia Social
2.
Conserv Biol ; 36(3): e13842, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34705299

RESUMEN

Natural forest regrowth is a cost-effective, nature-based solution for biodiversity recovery, yet different socioenvironmental factors can lead to variable outcomes. A critical knowledge gap in forest restoration planning is how to predict where natural forest regrowth is likely to lead to high levels of biodiversity recovery, which is an indicator of conservation value and the potential provisioning of diverse ecosystem services. We sought to predict and map landscape-scale recovery of species richness and total abundance of vertebrates, invertebrates, and plants in tropical and subtropical second-growth forests to inform spatial restoration planning. First, we conducted a global meta-analysis to quantify the extent to which recovery of species richness and total abundance in second-growth forests deviated from biodiversity values in reference old-growth forests in the same landscape. Second, we employed a machine-learning algorithm and a comprehensive set of socioenvironmental factors to spatially predict landscape-scale deviation and map it. Models explained on average 34% of observed variance in recovery (range 9-51%). Landscape-scale biodiversity recovery in second-growth forests was spatially predicted based on socioenvironmental landscape factors (human demography, land use and cover, anthropogenic and natural disturbance, ecosystem productivity, and topography and soil chemistry); was significantly higher for species richness than for total abundance for vertebrates (median range-adjusted predicted deviation 0.09 vs. 0.34) and invertebrates (0.2 vs. 0.35) but not for plants (which showed a similar recovery for both metrics [0.24 vs. 0.25]); and was positively correlated for total abundance of plant and vertebrate species (Pearson r = 0.45, p = 0.001). Our approach can help identify tropical and subtropical forest landscapes with high potential for biodiversity recovery through natural forest regrowth.


Predicción de la Recuperación de la Biodiversidad a Escala de Paisaje según la Regeneración Natural del Bosque Tropical Resumen La regeneración natural del bosque es una solución rentable para la recuperación de la biodiversidad basada en la naturaleza, sin embargo, los diferentes factores socioambientales pueden derivar en resultados variables. Cómo predecir la ubicación en donde la regeneración natural del bosque recuperará los niveles de biodiversidad, los cuales son un indicador del valor de la conservación y un suministro potencial de diferentes servicios ambientales, es un vacío de conocimiento importante en la planeación de la restauración forestal. Buscamos predecir y mapear la recuperación a escala de paisaje de la riqueza de especies y la abundancia total de vertebrados, invertebrados y plantas en bosques tropicales y subtropicales de segundo crecimiento para guiar la planeación de la restauración. Primero, realizamos un metaanálisis mundial para cuantificar la medida a la que se desvió la recuperación de la riqueza y la abundancia total de especies en los bosques de segundo crecimiento de los valores de biodiversidad en los bosques antiguos referenciales en el mismo paisaje. Después, utilizamos un algoritmo de aprendizaje automático y un conjunto integral de factores socioambientales para predecir espacialmente la desviación a escala de paisaje para después mapearla. Los modelos explicaron en promedio el 34% de la varianza observada en la recuperación (rango de 9-51%). La recuperación de la biodiversidad a escala de paisaje en los bosques de segundo crecimiento pudo predecirse espacialmente con base en los factores socioambientales del paisaje (demografía humana, uso y cobertura del suelo, alteraciones naturales y antropogénicas, productividad del ecosistema, tipo de topografía y de suelo); fue significativamente más alta para la riqueza de especies que para la abundancia total de vertebrados (desviación media pronosticada ajustada al rango de 0.09 versus 0.34) e invertebrados (0.2 versus 0.35) pero no para las plantas (las cuales mostraron una recuperación similar para ambas medidas [0.24 versus 0.25]); y tuvo una correlación positiva para la abundancia de especies de plantas y vertebrados (Pearson r =0.45, p=0.001). Nuestra estrategia puede ayudar a identificar los paisajes de bosques tropicales y subtropicales con un potencial alto para la recuperación de la biodiversidad por medio de la regeneración natural del bosque.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Bosques , Humanos , Invertebrados , Plantas , Suelo , Clima Tropical
3.
Sci Adv ; 10(27): eadk5430, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968357

RESUMEN

Mangroves' ability to store carbon (C) has long been recognized, but little is known about whether planted mangroves can store C as efficiently as naturally established (i.e., intact) stands and in which time frame. Through Bayesian logistic models compiled from 40 years of data and built from 684 planted mangrove stands worldwide, we found that biomass C stock culminated at 71 to 73% to that of intact stands ~20 years after planting. Furthermore, prioritizing mixed-species planting including Rhizophora spp. would maximize C accumulation within the biomass compared to monospecific planting. Despite a 25% increase in the first 5 years following planting, no notable change was observed in the soil C stocks thereafter, which remains at a constant value of 75% to that of intact soil C stock, suggesting that planting effectively prevents further C losses due to land use change. These results have strong implications for mangrove restoration planning and serve as a baseline for future C buildup assessments.


Asunto(s)
Biomasa , Carbono , Suelo , Humedales , Carbono/metabolismo , Suelo/química , Rhizophoraceae/crecimiento & desarrollo , Rhizophoraceae/metabolismo , Teorema de Bayes , Ecosistema
4.
Curr For Rep ; 9(3): 131-148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426633

RESUMEN

Purpose of the Review: Improved forest management is a promising avenue for climate change mitigation. However, we lack synthetic understanding of how different management actions impact aboveground carbon stocks, particularly at scales relevant for designing and implementing forest-based climate solutions. Here, we quantitatively assess and review the impacts of three common practices-application of inorganic NPK fertilizer, interplanting with N-fixing species, and thinning-on aboveground carbon stocks in plantation forests. Recent Findings: Site-level empirical studies show both positive and negative effects of inorganic fertilization, interplanting, and thinning on aboveground carbon stocks in plantation forests. Recent findings and the results of our analysis suggest that these effects are heavily moderated by factors such as species selection, precipitation, time since practice, soil moisture regime, and previous land use. Interplanting of N-fixing crops initially has no effect on carbon storage in main tree crops, but the effect becomes positive in older stands. Conversely, the application of NPK fertilizers increases aboveground carbon stocks, though the effect lessens with time. Moreover, increases in aboveground carbon stocks may be partially or completely offset by emissions from the application of inorganic fertilizer. Thinning results in a strong reduction of aboveground carbon stocks, though the effect lessens with time. Summary: Management practices tend to have strong directional effects on aboveground carbon stocks in plantation forests but are moderated by site-specific management, climatic, and edaphic factors. The effect sizes quantified in our meta-analysis can serve as benchmarks for the design and scoping of improved forest management projects as forest-based climate solutions. Overall, management actions can enhance the climate mitigation potential of plantation forests, if performed with sufficient attention to the nuances of local conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s40725-023-00182-5.

5.
Nat Commun ; 13(1): 4206, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902561

RESUMEN

Restoring forest cover is a key action for mitigating climate change. Although monoculture plantations dominate existing commitments to restore forest cover, we lack a synthetic view of how carbon accumulates in these systems. Here, we assemble a global database of 4756 field-plot measurements from monoculture plantations across all forested continents. With these data, we model carbon accumulation in aboveground live tree biomass and examine the biological, environmental, and human drivers that influence this growth. Our results identify four-fold variation in carbon accumulation rates across tree genera, plant functional types, and biomes, as well as the key mediators (e.g., genus of tree, endemism of species, prior land use) of variation in these rates. Our nonlinear growth models advance our understanding of carbon accumulation in forests relative to mean annual rates, particularly during the next few decades that are critical for mitigating climate change.


Asunto(s)
Carbono , Bosques , Biomasa , Cambio Climático , Humanos , Árboles
6.
Sci Rep ; 9(1): 18275, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31798011

RESUMEN

Mangrove forests capture and store exceptionally large amounts of carbon and are increasingly recognised as an important ecosystem for carbon sequestration. Yet land-use change in the tropics threatens this ecosystem and its critical 'blue carbon' (carbon stored in marine and coastal habitats) stores. The expansion of shrimp aquaculture is among the major causes of mangrove loss globally. Here, we assess the impact of mangrove to shrimp pond conversion on ecosystem carbon stocks, and carbon losses and gains over time after ponds are abandoned. Our assessment is based on an intensive field inventory of carbon stocks at a coastal setting in Thailand. We show that although up to 70% of ecosystem carbon is lost when mangroves are converted to shrimp ponds, some abandoned ponds contain deep mangrove soils (>2.5 m) and large carbon reservoirs exceeding 865 t carbon per hectare. We also found a positive recovery trajectory for carbon stocks in the upper soil layer (0-15 cm) of a chronosequence of abandoned ponds, associated with natural mangrove regeneration. Our data suggest that mangrove carbon pools can rebuild in abandoned ponds over time in areas exposed to tidal flushing.

7.
Science ; 381(6655): 277-278, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37471545
8.
PLoS One ; 12(1): e0169096, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28068361

RESUMEN

Mangroves provide extensive ecosystem services that support local livelihoods and international environmental goals, including coastal protection, biodiversity conservation and the sequestration of carbon (C). While voluntary C market projects seeking to preserve and enhance forest C stocks offer a potential means of generating finance for mangrove conservation, their implementation faces barriers due to the high costs of quantifying C stocks through field inventories. To streamline C quantification in mangrove conservation projects, we develop predictive models for (i) biomass-based C stocks, and (ii) soil-based C stocks for the mangroves of the Asia-Pacific. We compile datasets of mangrove biomass C (197 observations from 48 sites) and soil organic C (99 observations from 27 sites) to parameterize the predictive models, and use linear mixed effect models to model the expected C as a function of stand attributes. The most parsimonious biomass model predicts total biomass C stocks as a function of both basal area and the interaction between latitude and basal area, whereas the most parsimonious soil C model predicts soil C stocks as a function of the logarithmic transformations of both latitude and basal area. Random effects are specified by site for both models, which are found to explain a substantial proportion of variance within the estimation datasets and indicate significant heterogeneity across-sites within the region. The root mean square error (RMSE) of the biomass C model is approximated at 24.6 Mg/ha (18.4% of mean biomass C in the dataset), whereas the RMSE of the soil C model is estimated at 4.9 mg C/cm3 (14.1% of mean soil C). The results point to a need for standardization of forest metrics to facilitate meta-analyses, as well as provide important considerations for refining ecosystem C stock models in mangroves.


Asunto(s)
Carbono/análisis , Ecosistema , Modelos Teóricos , Algoritmos , Asia , Biomasa , Geografía , Océano Pacífico , Reproducibilidad de los Resultados , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA