RESUMEN
The sonotriboluminescence of suspensions of terbium(III) and europium(III) sulfates in decane without and in the presence of benzene, toluene and p-xylene was studied. The choice of crystals of these lanthanides is due to the fact that they have intense luminescence during mechanical action, and also do not dissolve in hydrocarbon solvents. During ultrasonic exposure to suspensions in pure alkanes, bands of Ln3+ ions and N2 in the UV region are recorded in the luminescence spectrum. When aromatic hydrocarbon molecules are added, bands of benzene, toluene and p-xylene molecules, coinciding with their photoluminescence spectra, are recorded in the sonotriboluminescence spectra in the UV region. The high sensitivity of the luminescence of suspensions to arene additives made it possible to obtain the dependence of the characteristic fluorescence of arene molecules in the sonotriboluminescence spectra on their concentration in suspensions. The limits of detection of benzene, toluene and p-xylene in the composition of this suspension were established. The lower limits of detection from the sonotriboluminescence spectra for xylene, toluene and benzene are 0.1, 3 and 50 ppmv, respectively. Fluorescence bands of these molecules were also recorded in the sonotriboluminescence spectra of suspensions in commercial dodecane and heptane with additives of commercial gasoline (up to 1%). The results obtained can be used for luminescent detection of aromatic compounds in saturated hydrocarbons.
RESUMEN
Hydrofluoroolefins (HFOs) constitute the newest generation of fluorocarbon refrigerants and foam-blowing agents due to their reduced global warming potential vs their saturated analogues. To identify new synthetic routes to HFOs, we show that reactions of bulky Ni(0) phosphine and -NHC complexes with vinylidene difluoride (VF2) afford µ-fluoro-1,1,3-trifluorobut-3-enyl Ni complexes. Moreover, addition of triisopropylsilane allows for reductive elimination of the reduced productâ2,4,4-trifluoro-1-buteneâdemonstrating the Ni-catalyzed hydrodefluorodimerization of VF2. Accompanying DFT calculations identify the T-shaped nickelacyclopentane intermediate that spontaneously undergoes selective intramolecular ß-F (vs ß-H) elimination.
Asunto(s)
Níquel , CatálisisRESUMEN
The germylone dimNHCGe (5, dimNHC = diimino N-heterocyclic carbene) was successfully prepared via the reduction of the germanium cation [dimNHCGeCl]+ with KC8. The molecular structure of 5 was unambiguously established by both NMR spectroscopy and single-crystal X-ray diffraction. The reactivity of 5 was investigated, revealing that it undergoes oxidative addition of HCl, CH3I, and PhI, accompanied by an unusual migration of the H, Me, and Ph groups from germanium to the carbene ligand. Related chemistry was also observed with C5F5N, which results in the migration of the fluorinated pyridine moiety to the carbene ligand. Compound 5 also undergoes cycloaddition with tetrachloro-o-benzoquinone to afford a Ge(IV) adduct.
RESUMEN
The aluminum(I) compound NacNacAl (NacNac=[ArNC(Me)CHC(Me)NAr]- , Ar=2,6-iPr2 C6 H3 , 1) shows diverse and substrate-controlled reactivity in reactions with N-heterocycles. 4-Dimethylaminopyridine (DMAP), a basic substrate in which the 4-position is blocked, induces rearrangement of NacNacAl by shifting a hydrogen atom from the methyl group of the NacNac backbone to the aluminum center. In contrast, C-H activation of the methyl group of 4-picoline takes place to produce a species with a reactive terminal methylene. Reaction of 1 with 3,5-lutidine results in the first example of an uncatalyzed, room-temperature cleavage of an sp2 C-H bond (in the 4-position) by an AlI species. Another reactivity mode was observed for quinoline, which undergoes 2,2'-coupling. Finally, the reaction of 1 with phthalazine produces the product of N-N bond cleavage.
RESUMEN
The transition to more economically friendly small-chain fluorinated groups is leading to a resurgence in the synthesis and reactivity of fluoroalkenes. One versatile method to obtain a variety of commercially relevant hydrofluoroalkenes involves the catalytic hydrodefluorination (HDF) of fluoroalkenes using silanes. In this work it is shown that copper hydride complexes of tertiary phosphorus ligands (L) can be tuned to achieve selective multiple HDF of fluoroalkenes. In one example, HDF of the hexafluoropropene dimer affords a single isomer of heptafluoro-2-methylpentene in which five fluorines have been selectively replaced with hydrogens. DFT computational studies suggest a distinct HDF mechanisms for L2CuH (bidentate or bulky monodentate phosphines) and L3CuH (small cone angle monodentate phosphines) catalysts, allowing for stereocontrol of the HDF of trifluoroethylene.
RESUMEN
In situ oxidation of the GaI compound NacNacGa by either N2 O or pyridine oxide results in the generation of a labile monomeric oxide, NacNacGa(O), which can easily cleave the C-H bonds of aliphatic and aromatic substrates featuring good donor sites. The products of this reaction are gallium organyl hydroxides. DFT calculations show that these reactions start with the formation of NacNac-Ga(O)(L) adducts, the oxo ligand of which can easily abstract protons from nearby C-H bonds, even for sp2 -hybridized carbon centers. Aliphatic amines do not enter this reaction for kinetic reasons, presumably because of the unfavorable sterics.
RESUMEN
Alkene metathesis with directly fluorinated alkenes is challenging, limiting its application in the burgeoning field of fluoro-organic chemistry. A new nickel tris(phosphite) fluoro(trifluoromethyl)carbene complex ([P3 Ni]=CFCF3 ) reacts with CF2 =CF2 (TFE) or CF2 =CH2 (VDF) to yield both metallacyclobutane and perfluorocarbene metathesis products, [P3 Ni]=CF2 and CR2 =CFCF3 (R=F, H). The reaction of [P3 Ni]=CFCF3 with trifluoroethylene also yields metathesis products, [P3 Ni]=CF2 and cis/trans-CFCF3 =CFH. However, unlike reactions with TFE and VDF, this reaction forms metallacyclopropanes and fluoronickel alkenyl species, resulting presumably from instability of the expected metallacyclobutanes. DFT calculations and experimental evidence established that the observed metallacyclobutanes are not intermediates in the formation of the observed metathesis products, thus highlighting a novel variant of the Chauvin mechanism enabled by the disparate four-coordinate transition states.
RESUMEN
Reaction of the cyclic guanidine TolNâSIMe with the aluminum(I) compound NacNacAl (1) results in the unprecedented cleavage of the C-N multiple bond to give, after rearrangement, the carbene-ligated Al(III) amide, NacNac'Al(NHTol)(SIMe) (6). DFT calculations revealed that these reactions proceed via a bimolecular mechanism in which either the basic Al(I) center or the transient AlâNTol species deprotonates the methyl group of the NacNac ligand.
RESUMEN
Treatment of Ni(0) complexes 1a-e with sub-atmospheric pressures of trifluoroethylene (TrFE) affords hydrofluoronickelacyclopentanes L2Ni(C4F6H2) 2a-e (L = PPh3, P(O-o-tol)3, PPh2Me, PPhMe2, PMe3). Fluorine NMR analysis of 2a-e demonstrates predominant formation of three (of the possible six) isomers upon oxidative cycloaddition of TrFE: the cis and trans head-tail isomers and the trans head-head isomer, where the CHF group is defined as the TrFE "head". The respective ratios of L2Ni(C4F6H2) isomers are influenced by the nature of L, with smaller phosphines favoring the thermodynamically preferred (from DFT calculations) trans head-head isomer (cf. 50% with PMe3) and the largest affording small amounts of the tail-tail isomers. Lewis and Brønsted acids induce a surprising double C-F bond activation in 2c-d, affording small functionalized hydrofluoroalkenes. Interestingly, varying the acid employed dictates the organic product obtained from the head-tail isomers: BF3·OEt2 is selective for 1,1,2,3-tetrafluorocyclobutene, whereas Me3SiOTf and N,N-dimethylanilinium bromide yield (Z,E)-1,1,3,4-tetrafluorobutadiene as the major fluorinated product. Reaction intermediates were isolated, and possible pathways are discussed.
RESUMEN
The reaction of cyclic urea 1,3-dimethyl-2-imidazolidinone with the aluminum(I) compound NacNacAl (1) gives an unexpected adduct of urea with the isomerized aluminum(III) hydride NacNac'AlH(OâSIMe) (3). A related reaction of 1 with phosphine oxides results in cleavage of the PâO bond and formation of hydroxyl derivatives NacNac'Al(OH)(OâPR3) [R = Ph (5) and Et (6)]. Density functional theory calculations revealed that these reactions proceed via a bimolecular mechanism in which either the basic aluminum(I) center or the transient AlâO species deprotonate the methyl group of the NacNac ligand.
RESUMEN
Selective reactions between nucleophilic N,N'-diaryl-heterocyclic carbenes (NHCs) and electrophilic fluorinated alkenes afford NHC fluoroalkenes in high yields. These stable compounds undergo efficient and selective fluoride abstraction with Lewis acids to give polyfluoroalkenyl imidazolium salts. These salts react at Cß with pyrrolidine to give ammonium fluoride-substituted salts, which give rise to conjugated imidazolium-enamine salts through loss of HF. Alternatively, reaction with 4-(dimethylamino)-pyridine provides a Cα-pyridinium-substituted NHC fluoroalkene. These compounds were studied using multinuclear NMR spectroscopy, mass spectrometry, and X-ray crystallography. Insight into their electronic structure and reactivity was gained through the use of DFT calculations.
RESUMEN
Colloidal suspensions of EuCl2, EuBr2, and EuSO4 nanoparticles (<50â nm) in dodecane and EuSO4 in 70% H2SO4 were synthesized. Moving single-bubble sonoluminescence (m-SBSL) spectra were obtained for a bubble performing radial oscillations in these suspensions and translational motions at the antinode of a standing ultrasonic wave with a frequency of about 27â kHz. In these spectra (at a spectral resolution of 10â nm), the sono-excited luminescence bands of the Eu2+ ion were detected for the first time, coinciding in the shape and position of the maxima (404, 413, and 377â nm for EuCl2, EuBr2, and EuSO4, respectively) with the bands of Eu2+ located in a crystalline environment in the photoluminescence spectra of nanoparticles of europium salts in suspensions. The detected sonoluminescence of Eu2+ arises due to the injection of nanoparticles into a bubble deformed during motion and excitation of a lanthanide ion at the periphery of the bubble volume during collisions of nanoparticles with charged particles, mainly electrons, coming from a hot nonequilibrium plasma, which periodically arises during bubble compression. Evidence for the excitation of the europium ion in the bubble is the absence of its luminescence bands in the SBSL spectra of the translationally immobile bubble, in which nanoparticles are unlikely to enter. The nanoparticles that enter the bubble also undergo decomposition in the plasma into fragments, in particular, with the formation of Eu, Eu+ in the excited state. The atomic lines of these fragments were recorded for the first time in the m-SBSL spectrum with a resolution of 1â nm for a suspension of EuSO4 nanoparticles in 70% H2SO4. The resulting m-SBSL spectra will add to the library of characteristic spectra of objects of sonoluminescent spectroscopic analysis and will make it possible to identify and determine the content of Eu or Eu2+ in these objects.
RESUMEN
In a changing climate, forest ecosystems have become increasingly vulnerable to continuously exacerbating heat and associated drought conditions. Climate stress resilience is governed by a complex interplay of global, regional, and local factors, with hydrological conditions being among the key players. We studied a Scots pine (Pinus sylvestris L.) forest ecosystem located near the southern edge of the boreal ecotone, which is particularly subjected to frequent and prolonged droughts. By comparing the dendrochronological series of pines growing in apparently contrasting hydrological conditions ranging from the waterlogged peat bog area to the dry soil at the surrounding elevations, we investigated how the soil water regime affects the climate response and drought stress resilience of the forest ecosystem. We found that in the dry land area, a significant fraction of the trees were replaced after two major climate extremes: prolonged drought and extremely low winter temperatures. The latter has also been followed by a three- to ten-fold growth reduction of the trees that survived in the next year, whereas no similar effect has been observed in the peat bog area. Multi-scale detrended partial cross-correlation analysis (DPCCA) indicated that tree-ring width (TRW) was negatively correlated with spring and summer temperatures and positively correlated with the Palmer drought severity index (PDSI) for the same year. For the elevated dry land area, the above effect extends to interannual scales, indicating that prolonged heatwaves and associated droughts are among the factors that limit tree growth. In marked contrast, in the waterlogged peat bog area, a reversed tendency was observed, with prolonged dry periods as well as warmer springs and summers over several consecutive years, leading to increasing tree growth with a one- to three-year time lag. Altogether, our results indicate that the pessimal conditions of a warming climate could become favorable through the preservation of the soil water regime.
RESUMEN
This is a brief research review on the new method of development for element luminescence determination, namely, sonoluminescent spectroscopy. The advantages and disadvantages of the technique of multibubble sonoluminescence (MBSL) in solutions used to apply this method are discussed. It has been shown that the use of a new technique moving single-bubble sonoluminescence (m-SBSL) in colloidal suspensions of nanoparticles (<50 nm) containing the elements analyzed seems preferable for this purpose. This makes it possible to determine elements not only at lower concentrations than when using MBSL in solutions but also to find elements that are unavailable for determination through previous techniques. Thus, this new technique expands the range of elements that can be determined using sonoluminescent spectroscopy. The article provides a detailed description of the standard procedure for the preparation and recording of m-SBSL in colloidal suspensions, as well as examples of characteristic spectra of some elements obtained and recorded for the first time according to this new technique (Al, K, Mn, Cd, Pt, Ni, and Ti), including those not previously found using the MBSL in solutions (Al, Cd, Pt, Ni, and Ti). An example of the analytical line at 396 nm in the Al spectrum obtained through this new technique on the basis of an AlCl3 initial aqueous solution, the region of the linear dependence of the intensity on the AlCl3 concentration was registered, and the lower limit of the spectroscopic determination of the Al content in this solution was estimated as 8.3·10-3 M. Using the analysis of the obtained Cd spectrum as an example, we carried out a spectroscopic measurement of the electronic temperature achieved at m-SBSL in bubble plasma at the moment of greatest compression of a bubble with light emission during its acoustic oscillations in dodecane, Te = 7900 ± 500 K.
RESUMEN
The moving single-bubble sonoluminescence of Ce3+ in water and ethylene glycol solutions of CeCl3 and (NH4)2Ce(NO3)6 was studied. As found, a significant part of intensity of the luminescence (100% with cerium concentration less than 10-4 M) is due to the sonochemiluminescence. A key reaction of sonochemiluminescence is the Ce4+ reduction by a solvated (or hydrated in water) electron: Ce4+ + es (eaq) â *Ce3+. Solvated electrons are formed in a solution via electrons ejection from a low-temperature plasma periodically generated in deformable moving bubble at acoustic vibrations. Reactions of heterolytic dissociation of solvents make up the source of electrons in the plasma. In aqueous CeCl3 solutions, the Ce4+ ion is formed at the oxidation of Ce3+ by OH radical. The latter species originates from homolytic dissociation of water in the plasma of the bubble, also penetrating from the moving bubble into the solution. The sonochemiluminescence in cerium trichloride solutions are quenched by the Br- (acceptor of OH) and H+ ions (acceptor of eaq). In water and ethylene glycol solutions of (NH4)2Ce(NO3)6, the sonochemiluminescence also quenched by the H+ ion. The sonochemiluminescence in CeCl3 solutions is registered at [Ce3+] ≥ 10-5 M. Then the sonochemiluminescence intensity increases with the cerium ion concentration and reaches the saturation plateau at 10-2 M. It was shown that sonophotoluminescence (re-emission of light of bubble plasma emitters by cerium ions) also contributes to the luminescence of Ce3+ in solutions with [Ce3+] ≥ 10-4 M. If the cerium concentration is more than 10-2 M, a third source contributes to luminescence, viz., the collisional excitation of Ce3+ ions penetrating into the moving bubble.
RESUMEN
OBJECTIVES: Cerebral small vessel disease (SVD) associated with age and vascular risk factors is one of the leading causes of cognitive disorders as well as ischemic and hemorrhagic strokes. The pathogenesis of this disease has not been fully understood yet. The previously established association of the antibodies against the NR2 subunit of the NMDA receptor (NR2ab) with the mechanisms of SVD such as ischemia and blood-brain barrier (BBB) disruption, might suggest their importance in the brain damage. DESIGN & METHODS: We studied the NR2ab serum level in 70 patients (45 females, 61.1 ± 6.3 y.o.) with different severity of cognitive impairment and MRI features of SVD and 20 healthy volunteers (12 females, 58.5 ± 6.4 y.o.). RESULTS: The elevated level of NR2ab was associated with subjective cognitive impairment (SCI) (p = 0.028) and mild cognitive impairment (MCI) (p = 0.017), Fazekas grade (F) 2 (p = 0,002) and F3 (p = 0,009) of white matter hyperintensities (WMH) and the numbers of lacunes in the cerebral white matter (less than 5) (p = 0,039). CONCLUSION: The detected increase in serum NR2ab level in patients with SCI, as well as the minimal amount of white matter lacunes, is most likely caused by hypoxia-induced endothelial damage in the early stage of SVD. Normal NR2ab values in patients with F1 WMH, the increased NR2ab level in patients with F2 and F3 WMH and those with the minimal number of lacunes can indicate that NR2bs are involved in diffuse brain damage due to hypoxia-induced loss of BBB integrity.
Asunto(s)
Autoanticuerpos/sangre , Enfermedades de los Pequeños Vasos Cerebrales/sangre , Receptores de N-Metil-D-Aspartato/sangre , Anciano , Biomarcadores/sangre , Disfunción Cognitiva/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de RiesgoRESUMEN
INTRODUCTION: Cerebral small vessel disease (CSVD) is the leading cause of vascular and mixed degenerative cognitive impairment (CI). The variability in the rate of progression of CSVD justifies the search for sensitive predictors of CI. MATERIALS: A total of 74 patients (48 women, average age 60.6 ± 6.9 years) with CSVD and CI of varying severity were examined using 3T MRI. The results of diffusion tensor imaging with a region of interest (ROI) analysis were used to construct a predictive model of CI using binary logistic regression, while phase-contrast magnetic resonance imaging and voxel-based morphometry were used to clarify the conditions for the formation of CI predictors. RESULTS: According to the constructed model, the predictors of CI are axial diffusivity (AD) of the posterior frontal periventricular normal-appearing white matter (pvNAWM), right middle cingulum bundle (CB), and mid-posterior corpus callosum (CC). These predictors showed a significant correlation with the volume of white matter hyperintensity; arterial and venous blood flow, pulsatility index, and aqueduct cerebrospinal fluid (CSF) flow; and surface area of the aqueduct, volume of the lateral ventricles and CSF, and gray matter volume. CONCLUSION: Disturbances in the AD of pvNAWM, CB, and CC, associated with axonal damage, are a predominant factor in the development of CI in CSVD. The relationship between AD predictors and both blood flow and CSF flow indicates a disturbance in their relationship, while their location near the floor of the lateral ventricle and their link with indicators of internal atrophy, CSF volume, and aqueduct CSF flow suggest the importance of transependymal CSF transudation when these regions are damaged.
RESUMEN
The evaluation of the clustering of magnetic resonance imaging (MRI) signs into MRI types and their relationship with circulating markers of vascular wall damage were performed in 96 patients with cerebral small vessel disease (cSVD) (31 men and 65 women; mean age, 60.91 ± 6.57 years). The serum concentrations of the tumor necrosis factor-α (TNF-α), transforming growth factor-ß1 (TGF-ß1), vascular endothelial growth factor-A (VEGF-A), and hypoxia-inducible factor 1-α (HIF-1α) were investigated in 70 patients with Fazekas stages 2 and 3 of white matter hyperintensities (WMH) and 21 age- and sex-matched volunteers with normal brain MRI using ELISA. The cluster analysis excluded two patients from the further analysis due to restrictions in their scanning protocol. MRI signs of 94 patients were distributed into two clusters. In the first group there were 18 patients with Fazekas 3 stage WMH. The second group consisted of 76 patients with WMH of different stages. The uneven distribution of patients between clusters limited the subsequent steps of statistical analysis; therefore, a cluster comparison was performed in patients with Fazekas stage 3 WMH, designated as MRI type 1 and type 2 of Fazekas 3 stage. There were no differences in age, sex, degree of hypertension, or other risk factors. MRI type 1 had significantly more widespread WMH, lacunes in many areas, microbleeds, atrophy, severe cognitive and gait impairments, and was associated with downregulation of VEGF-A compared with MRI type 2. MRI type 2 had more severe deep WMH, lacunes in the white matter, no microbleeds or atrophy, and less severe clinical manifestations and was associated with upregulation of TNF-α compared with MRI type 1. The established differences reflect the pathogenetic heterogeneity of cSVD and explain the variations in the clinical manifestations observed in Fazekas stage 3 of this disease.
RESUMEN
It is generally assumed that cerebrospinal fluid (CSF) is secreted in the brain ventricles, and so after an acute blockage of the aqueduct of Sylvius an increase in the ventricular CSF pressure and dilation of isolated ventricles may be expected. We have tested this hypothesis in cats. After blocking the aqueduct, we measured the CSF pressure in both isolated ventricles and the cisterna magna, and performed radiographic monitoring of the cross-sectional area of the lateral ventricle. The complete aqueductal blockage was achieved by implanting a plastic cannula into the aqueduct of Sylvius through a small tunnel in the vermis of the cerebellum in the chloralose-anesthetized cats. After the reconstitution of the occipital bone, the CSF pressure was measured in the isolated ventricles via a plastic cannula implanted in the aqueduct of Sylvius and in the cisterna magna via a stainless steel cannula. During the following 2 h, the CSF pressures in the isolated ventricles and cisterna magna were identical to those in control conditions. We also monitored the ventricular cross-sectional area by means of radiography for 2 h after the aqueductal blockage and failed to observe any significant changes. When mock CSF was infused into isolated ventricles to imitate the CSF secretion, the gradient of pressure between the ventricle and cisterna magna developed, and disappeared as soon as the infusion was terminated. However, when mock CSF was infused into the cisterna magna at various rates, the resulting increased subarachnoid CSF pressure was accurately transmitted across the brain parenchyma into the CSF of isolated ventricles. The lack of the increase in the CSF pressure and ventricular dilation during 2 h of aqueductal blockage suggests that aqueductal obstruction by itself does not lead to development of hypertensive acute hydrocephalus in cats.