Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cancer ; 22(1): 161, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789383

RESUMEN

Fecal microRNAs represent promising molecules with potential clinical interest as non-invasive diagnostic and prognostic biomarkers. Colorectal cancer (CRC) screening based on the fecal immunochemical test (FIT) is an effective tool for prevention of cancer development. However, due to the poor sensitivity of FIT especially for premalignant lesions, there is a need for implementation of complementary tests. Improving the identification of individuals who would benefit from further investigation with colonoscopy using molecular analysis, such as miRNA profiling of FIT samples, would be ideal due to their widespread use. In the present study, we assessed the feasibility of applying small RNA sequencing to measure human miRNAs in FIT leftover buffer in samples from two European screening populations. We showed robust detection of miRNAs with profiles similar to those obtained from specimens sampled using the established protocol of RNA stabilizing buffers, or in long-term archived samples. Detected miRNAs exhibited differential abundances for CRC, advanced adenoma, and control samples that were consistent for FIT and RNA-stabilizing buffers. Interestingly, the sequencing data also allowed for concomitant evaluation of small RNA-based microbial profiles. We demonstrated that it is possible to explore the human miRNome in FIT leftover samples across populations and envision that the analysis of small RNA biomarkers can complement the FIT in large scale screening settings.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , MicroARNs/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Heces/química , Detección Precoz del Cáncer/métodos , Biomarcadores
2.
Molecules ; 26(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804240

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer, characterized by unrestrained progression, invasiveness and treatment resistance. To date, there are limited curative options, with surgical resection as the only effective strategy, hence the urgent need to discover novel therapies. A platform of onco-immunology targets is represented by molecules that play a role in the reprogrammed cellular metabolism as one hallmark of cancer. Due to the hypoxic tumor microenvironment (TME), PDA cells display an altered glucose metabolism-resulting in its increased uptake-and a higher glycolytic rate, which leads to lactate accumulation and them acting as fuel for cancer cells. The consequent acidification of the TME results in immunosuppression, which impairs the antitumor immunity. This review analyzes the genetic background and the emerging glycolytic enzymes that are involved in tumor progression, development and metastasis, and how this represents feasible therapeutic targets to counteract PDA. In particular, as the overexpressed or mutated glycolytic enzymes stimulate both humoral and cellular immune responses, we will discuss their possible exploitation as immunological targets in anti-PDA therapeutic strategies.


Asunto(s)
Glucólisis/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Transducción de Señal/inmunología , Animales , Humanos , Inmunidad/inmunología , Inmunoterapia Adoptiva/métodos , Microambiente Tumoral/inmunología
3.
Methods Mol Biol ; 2435: 19-33, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34993937

RESUMEN

Antibodies against autologous tumor-associated antigens have been demonstrated as being useful biomarkers for early cancer diagnosis and prognosis. They have several advantages such as long half-life (7-30 days depending on subtiter of Ig), inherent stability in patients' blood due to not being subjected to proteolysis, well-studied biochemical properties, and their easy detections via secondary antibodies or antigens. Moreover, they can be easily screened in the serum using a noninvasive approach. Consequently, many technical approaches have been developed to study autoantibodies. We used serological proteome analysis (SERPA) for analyzing antibodies in pancreatic cancer patients' sera, and the technique will be discussed in detail. SERPA has several advantages over other approaches currently used such as SEREX (serological analysis of tumor antigens by recombinant cDNA expression cloning) and phage display. SEREX involves the construction of a lambda phage cDNA library from tumor samples to infect bacteria. While library construction is a quite laborious and time-consuming procedure in SEREX, detection of posttranslational modifications that could be fundamental for antibody recognition is a major limitation of both SEREX and phage display techniques. SERPA avoids the time-consuming construction of cDNA libraries. In addition, since it does not rely on bacterial expression of antigens, antigens will have their usual posttranslational modifications preventing false-positive or -negative results in autoantibody profiling.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Antígenos de Neoplasias , Biblioteca de Genes , Humanos , Inmunoterapia , Neoplasias/diagnóstico , Neoplasias/genética
4.
J Immunother Cancer ; 8(2)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33115943

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is an almost incurable tumor that is mostly resistant to chemotherapy (CT). Adaptive immune responses to tumor-associated antigens (TAA) have been reported, but immunotherapy (IT) clinical trials have not yet achieved any significant increase in survival, confirming the suppressive environment of PDA. As CT has immune-modulating properties, we investigated the effect of gemcitabine (GEM) in antitumor effector responses to TAA in patients with PDA. METHODS: The IgG antibody repertoire in patients with PDA before and after CT was profiled by serological proteome analysis and ELISA and their ability to activate complement-dependent cytotoxicity (CDC) was measured. Peripheral T cells were stimulated in vitro with recombinant TAA, and specific proliferation, IFN-γ/IL-10 and CD8+/Treg ratios were measured. Mice that spontaneously developed PDA were treated with GEM and inoculated with an ENO1 (α-Enolase) DNA vaccine. In some experimental groups, the effect of depleting CD4, CD8 and B cells by specific antibodies was also evaluated. RESULTS: CT increased the number of TAA recognized by IgG and their ability to activate CDC. Evaluation of the IFN-γ/IL-10 ratio and CD8+/Treg ratios revealed that CT treatment shifted T cell responses to ENO1, G3P (glyceraldheyde-3-phosphate dehydrogenase), K2C8 (keratin, type II cytoskeletal 8) and FUBP1 (far upstream binding protein 1), four of the most recognized TAA, from regulatory to effector. In PDA mice models, treatment with GEM prior to ENO1 DNA vaccination unleashed CD4 antitumor activity and strongly impaired tumor progression compared with mice that were vaccinated or GEM-treated alone. CONCLUSIONS: Overall, these data indicate that, in PDA, CT enhances immune responses to TAA and renders them suitable targets for IT.


Asunto(s)
Antígenos de Neoplasias/inmunología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Inmunoterapia/métodos , Proteómica/métodos , Vacunas de ADN/uso terapéutico , Anciano , Animales , Femenino , Humanos , Ratones , Persona de Mediana Edad , Vacunas de ADN/farmacología
5.
Cancers (Basel) ; 10(2)2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29462900

RESUMEN

Pancreatic Ductal Adenocarcinoma (PDA) is an almost incurable radio- and chemo-resistant tumor, and its microenvironment is characterized by a strong desmoplastic reaction associated with a significant infiltration of T regulatory lymphocytes and myeloid-derived suppressor cells (Tregs, MDSC). Investigating immunological targets has identified a number of metabolic and cytoskeletal related molecules, which are typically recognized by circulating antibodies. Among these molecules we have investigated alpha-enolase (ENO1), a glycolytic enzyme that also acts a plasminogen receptor. ENO1 is also recognized by T cells in PDA patients, so we developed a DNA vaccine that targets ENO1. This efficiently induces many immunological processes (antibody formation and complement-dependent cytotoxicity (CDC)-mediated tumor killing, infiltration of effector T cells, reduction of infiltration of myeloid and Treg suppressor cells), which significantly increase the survival of genetically engineered mice that spontaneously develop pancreatic cancer. Although promising, the ENO1 DNA vaccine does not completely eradicate the tumor, which, after an initial growth inhibition, returns to proliferate again, especially when Tregs and MDSC ensue in the tumor mass. This led us to develop possible strategies for combinatorial treatments aimed to broaden and sustain the antitumor immune response elicited by DNA vaccination. Based on the data we have obtained in recent years, this review will discuss the biological bases of possible combinatorial treatments (chemotherapy, PI3K inhibitors, tumor-associated macrophages, ENO1 inhibitors) that could be effective in amplifying the response induced by the immune vaccination in PDA.

6.
Front Biosci (Landmark Ed) ; 22(5): 944-959, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27814656

RESUMEN

Alpha-enolase (ENO1) is a metabolic enzyme involved in the synthesis of pyruvate. It also acts as a plasminogen receptor and mediates the activation of plasmin and extracellular matrix degradation. In tumor cells, ENO1 is up-regulated and supports the Warburg effect; it is expressed at the cell surface, where it promotes cancer invasion, and is subjected to a specific array of post-translational modifications, namely acetylation, methylation and phosphorylation. ENO1 overexpression and post-translational modifications could be of diagnostic and prognostic value in many cancer types. Information on the biochemical, proteomics and immunological characterization of ENO1, and particularly its ability to trigger a strong specific humoral and cellular immune response, make this ubiquitous protein an interesting tumor target; DNA vaccination with ENO1 in preclinical models efficiently delays the development of very aggressive tumors such as pancreatic cancer. This review aims to analyze the main stages by which the tumor associated antigen (TAA) ENO1 has become a promising target that opens potential avenues for cancer immunotherapy.


Asunto(s)
Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/inmunología , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/inmunología , Inmunoterapia , Neoplasias/enzimología , Neoplasias/terapia , Fosfopiruvato Hidratasa/antagonistas & inhibidores , Fosfopiruvato Hidratasa/inmunología , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/inmunología , Animales , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Autoanticuerpos/metabolismo , Biomarcadores de Tumor/metabolismo , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Masculino , Neoplasias/inmunología , Fosfopiruvato Hidratasa/metabolismo , Linfocitos T/inmunología , Proteínas Supresoras de Tumor/metabolismo
7.
J Hematol Oncol ; 10(1): 16, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086938

RESUMEN

BACKGROUND: We have previously shown that in pancreatic ductal adenocarcinoma (PDA) cells, the glycolytic enzyme alpha-enolase (ENO1) also acts as a plasminogen receptor and promotes invasion and metastasis formation. Moreover, ENO1 silencing in PDA cells induces oxidative stress, senescence and profoundly modifies PDA cell metabolism. Although anti-ENO1 antibody inhibits PDA cell migration and invasion, little is known about the role of ENO1 in regulating cell-cell and cell-matrix contacts. We therefore investigated the effect of ENO1 silencing on the modulation of cell morphology, adhesion to matrix substrates, cell invasiveness, and metastatic ability. METHODS: The membrane and cytoskeleton modifications that occurred in ENO1-silenced (shENO1) PDA cells were investigated by a combination of confocal microscopy and atomic force microscopy (AFM). The effect of ENO1 silencing was then evaluated by phenotypic and functional experiments to identify the role of ENO1 in adhesion, migration, and invasion, as well as in senescence and apoptosis. The experimental results were then validated in a mouse model. RESULTS: We observed a significant increase in the roughness of the cell membrane due to ENO1 silencing, a feature associated with an impaired ability to migrate and invade, along with a significant downregulation of proteins involved in cell-cell and cell-matrix adhesion, including alpha v/beta 3 integrin in shENO1 PDA cells. These changes impaired the ability of shENO1 cells to adhere to Collagen I and IV and Fibronectin and caused an increase in RGD-independent adhesion to vitronectin (VN) via urokinase plasminogen activator receptor (uPAR). Binding of uPAR to VN triggers integrin-mediated signals, which result in ERK1-2 and RAC activation, accumulation of ROS, and senescence. In shENO1 cancer cells, the use of an anti-uPAR antibody caused significant reduction of ROS production and senescence. Overall, a decrease of in vitro and in vivo cell migration and invasion of shENO1 PDA cells was observed. CONCLUSION: These data demonstrate that ENO1 promotes PDA survival, migration, and metastasis through cooperation with integrins and uPAR.


Asunto(s)
Biomarcadores de Tumor/fisiología , Adhesión Celular , Proteínas de Unión al ADN/fisiología , Integrina alfaVbeta3/genética , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Neoplasias Pancreáticas/patología , Fosfopiruvato Hidratasa/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Forma de la Célula , Senescencia Celular , Proteínas de Unión al ADN/genética , Expresión Génica , Silenciador del Gen , Humanos , Integrina alfaVbeta3/metabolismo , Integrinas/metabolismo , Integrinas/fisiología , Ratones , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/metabolismo , Fosfopiruvato Hidratasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/fisiología , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA