Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(13): 9188-9197, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36919347

RESUMEN

CaMnO3-δ-based perovskites find application in a variety of thermochemical cycles, e.g. oxygen partial pressure adjustment, chemical looping processes, and thermochemical energy storage. The applicability of these materials is governed by their thermodynamic and kinetic properties. Therefore, tunability of these properties is desirable to adapt the material to the required conditions. In this study, the effect of Sr content in Ca1-xSrxMnO3-δ on thermodynamics and kinetics is investigated by thermogravimetric analysis. The thermodynamics are measured in the temperature range of 873 K to 1473 K with oxygen partial pressures of 1 × 10-4 bar to 0.8 bar. The oxidation kinetics were characterized in the temperature range from 473 K to 673 K with oxygen partial pressures of 0.01 bar to 1 bar. The reduction kinetics were very rapid in the temperature range of 873 K to 1023 K, with the measured rates limited by the constraints of the measurement device. The results show that with increasing Sr content the structural changes of the material decrease the reduction enthalpy and the oxidation activation energy. This not only leads to a tunability of material properties, but can also be used to predict changes of these properties when only the structural changes are known.

2.
Phys Chem Chem Phys ; 21(4): 2186-2195, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30644473

RESUMEN

Countercurrent reactors can be utilized in chemical reaction systems which involve either a reaction between flows of different phases, or reactions between flows separated by a selective permeable membrane. This idea is quite similar in nature to a countercurrent heat exchanger, where the inlet of one participating flow is exposed to the outlet of the opposite flow. A countercurrent configuration can therefore improve the reaction conversion extent and transport properties. Here we formulate a straightforward approach in terms of an exchange coordinate, in order to determine an upper bound of species exchange in such systems, subject to the second law of thermodynamics and conservation of mass. The methodology is independent of the specifics of reactor design and can be generally applied to determine the maximum thermodynamic benefit of using a countercurrent reactor. We then demonstrate the analysis for a number of thermochemical fuel production routes; membrane thermolysis of carbon dioxide, dry methane reforming across a membrane, reverse water gas shift across a membrane, and the thermochemical ceria cycle.

3.
Mater Horiz ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962871

RESUMEN

Ammonia synthesis via the catalytic Haber-Bosch process is characterized by its high pressures and low single-pass conversions, as well as by the energy-intensive production of the precursors H2 and N2 and their concomitant greenhouse gas emissions. Alternatively, thermochemical cycles based on metal nitrides stand as a promising pathway to green ammonia production because they can be conducted at moderate pressures without added catalysts and be further driven by concentrated solar energy as the source of high-temperature process heat. The ideal two-step cycle consists of the nitridation of a metal to form a metal nitride, followed by the hydrogenation of the metal nitride to synthetize NH3 and reform the metal. Here, we perform a combined theoretical and experimental screening of mono-metallic nitrides for several candidates, namely for Sr, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, Li, and Al. For the theoretical screening, Ellingham diagrams and chemical equilibrium compositions are examined with thermodynamic data derived from density function theory computations. For the experimental screening, thermogravimetric runs and mass balances supported by on-line gas analyses are performed for both steps of the cycle at ambient pressure and over the temperature ranges 100-1000 °C for nitridation and 100-500 °C for hydrogenation. The strontium-based cycle is selected as a reference for detailed examination and shown to synthetize NH3 at 1 bar by effecting the nitridation at 407 °C (at peak rate) and the hydrogenation at 339 °C (at peak rate). The co-formation of metal hydrides (SrH2) and metal imides (Sr2HN) are shown to help close the material cycle.

4.
ACS Appl Mater Interfaces ; 15(1): 806-817, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36542810

RESUMEN

Identifying thermodynamically favorable and stable non-stoichiometric metal oxides is of crucial importance for solar thermochemical (STC) fuel production via two-step redox cycles. The performance of a non-stoichiometric metal oxide depends on its thermodynamic properties, oxygen exchange capacity, and its phase stability under high-temperature redox cycling conditions. Perovskite oxides (ABO3-δ) are being considered as attractive alternatives to the state-of-the-art ceria (CeO2-δ) due to their high thermodynamic and structural tunability. However, perovskite oxides often exhibit low entropy change compared to ceria, as they generally have one only redox active site, leading to lower mass-specific fuel yields. Herein, we investigate cation-deficient Ce-substituted perovskite oxides as a new class of potential redox materials combining the advantages of perovskites and ceria. We newly synthesized the (CexSr1-x)0.95Ti0.5Mn0.5O3-δ (x = 0, 0.10, 0.15, and 0.20; CSTM) series, with dual-redox active sites comprising Ce (at the A-site) and Mn (at the B-site). By introducing a cation deficiency (∼5%), CSTM perovskite oxides with both phase purity (x ≤ 0.15) and high-temperature structural stability under STC redox cycling conditions are obtained. Thermodynamic properties are evaluated by measuring oxygen non-stoichiometry in the temperature range T = 700-1400 °C and the oxygen partial pressure range pO2 = 1-10-4 bar. The results demonstrate that CSTM perovskite oxides exhibit a composition-dependent simultaneous increase of enthalpy and entropy change with increasing Ce-substitution. (Ce0.20Sr0.80)0.95Ti0.5Mn0.5O3-δ (CSTM20) showed a combination of large entropy change of ∼141 J (mol-O)-1 K-1 and moderate enthalpy change of ∼238 kJ (mol-O)-1, thereby creating favorable conditions for thermochemical H2O splitting. Furthermore, the oxidation states and local coordination environment around Mn, Ce, and Ti sites in the pristine and reduced CSTM samples were extensively studied using X-ray absorption spectroscopy. The results confirmed that both Ce (at the A-site) and Mn (at the B-site) centers undergo simultaneous reduction during thermochemical redox cycling.

5.
Sci Rep ; 6: 33006, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27623228

RESUMEN

We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales.

6.
Nanoscale ; 5(11): 4923-30, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23624613

RESUMEN

Highly ordered self-assembled silver nanoparticle (NP) arrays have been produced by glancing angle deposition on faceted c-plane Al2O3 templates. The NP shape can be tuned by changing the substrate temperature during deposition. Reflectance anisotropy spectroscopy has been used to monitor the plasmonic evolution of the sample during the growth. The structures showed a strong dichroic response related to NP anisotropy and dipolar coupling. Furthermore, multipolar resonances due to sharp edge effects between NP and substrate were observed. Analytical and numerical methods have been used to explain the results and extract semi-quantitative information on the morphology of the NPs. The results provide insights on the growth mechanisms by the glancing angle deposition. Finally, it has been shown that the NP morphology can be manipulated by a simple illumination of the surface with an intense light source, inducing changes in the optical response. This opens up new possibilities for engineering plasmonic structure over large active areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA