Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Immunol Cell Biol ; 101(6): 514-524, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36401824

RESUMEN

Influenza A viruses (IAVs) exist as distinct serological subtypes, with limited antibody cross reactivity compared with T-cell responses, leading to universal vaccines that elicit robust T-cell responses entering clinical trials to combat pandemic and zoonotic outbreaks. Previously we have extensively characterized the viral-vectored universal vaccine, Wyeth/IL-15/5flu, a group 1 hemagglutinin, H5N1-based vaccine using a vaccinia backbone with interleukin (IL)-15. The vaccine elicits robust T-cell responses to provide heterosubtypic protection from lethal infection; however, we have also observed short-term morbidity of vaccinated mice with a disparity between the effects of sublethal infection with group 1 and 2 IAV strains. At day 3 of H3N2 (group 2 IAV) infection, there was a heavily skewed T helper type 1 response in vaccinated infected mice with overproduction of cytokines and reduced chemokines, whereas H1N1 (group 1 IAV) infection had increased innate cellular responses. These findings suggest that increased and early immune activation by T-cell activating vaccines may induce mild immunopathology when there is a mismatch between non-neutralizing antibody and cross-reactive memory T-cell responses leading to exuberant cytokine production. Therefore, to avoid overstimulating proinflammatory immune responses upon infection, universal influenza vaccines that elicit strong T-cell immunity will need a robust cross-reactive antibody response.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Citocinas , Subtipo H3N2 del Virus de la Influenza A , Anticuerpos Antivirales
2.
Respirology ; 27(4): 301-310, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34820940

RESUMEN

BACKGROUND AND OBJECTIVE: Few head-to-head evaluations of immune responses to different vaccines have been reported. METHODS: Surrogate virus neutralization test (sVNT) antibody levels of adults receiving either two doses of BNT162b2 (n = 366) or CoronaVac (n = 360) vaccines in Hong Kong were determined. An age-matched subgroup (BNT162b2 [n = 49] vs. CoronaVac [n = 49]) was tested for plaque reduction neutralization (PRNT) and spike-binding antibody and T-cell reactivity in peripheral blood mononuclear cells. RESULTS: One month after the second dose of vaccine, BNT162b2 elicited significantly higher PRNT50 , PRNT90 , sVNT, spike receptor binding, spike N-terminal domain binding, spike S2 domain binding, spike FcR binding and antibody avidity levels than CoronaVac. The geometric mean PRNT50 titres in those vaccinated with BNT162b2 and CoronaVac vaccines were 251.6 and 69.45, while PRNT90 titres were 98.91 and 16.57, respectively. All of those vaccinated with BNT162b2 and 45 (91.8%) of 49 vaccinated with CoronaVac achieved the 50% protection threshold for PRNT90. Allowing for an expected seven-fold waning of antibody titres over 6 months for those receiving CoronaVac, only 16.3% would meet the 50% protection threshold versus 79.6% of BNT162b2 vaccinees. Age was negatively correlated with PRNT90 antibody titres. Both vaccines induced SARS-CoV-2-specific CD4+ and CD8+ T-cell responses at 1 month post-vaccination but CoronaVac elicited significantly higher structural protein-specific CD4+ and CD8+ T-cell responses. CONCLUSION: Vaccination with BNT162b2 induces stronger humoral responses than CoronaVac. CoronaVac induces higher CD4+ and CD8+ T-cell responses to the structural protein than BNT162b2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Vacuna BNT162 , COVID-19/prevención & control , Hong Kong , Humanos , Leucocitos Mononucleares , SARS-CoV-2
3.
J Immunol Methods ; 523: 113584, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37918618

RESUMEN

The magnitude and quality of cell-mediated immune responses elicited by natural infection or vaccination are commonly measured by Interferon-É£ (IFN-É£) Enzyme-Linked ImmunoSpot (ELISpot) and Intracellular Cytokine Staining (ICS). To date, laboratories apply a variety of in-house procedures which leads to diverging results, complicates interlaboratory comparisons and hampers vaccine evaluations. During the FLUCOP project, efforts have been made to develop harmonized Standard Operating Procedures (SOPs) for influenza-specific IFN-É£ ELISpot and ICS assays. Exploratory pilot studies provided information about the interlaboratory variation before harmonization efforts were initiated. Here we report the results of two proficiency tests organized to evaluate the impact of the harmonization effort on assay results and the performance of participating FLUCOP partners. The introduction of the IFN-É£ ELISpot SOP reduced variation of both background and stimulated responses. Post-harmonization background responses were all lower than an arbitrary threshold of 50 SFU/million cells. When stimulated with A/California and B/Phuket, a statistically significant reduction in variation (p < 0.0001) was observed and CV values were strongly reduced, from 148% to 77% for A/California and from 126% to 73% for B/Phuket. The harmonizing effect of applying an ICS SOP was also confirmed by an increased homogeneity of data obtained by the individual labs. The application of acceptance criteria on cell viability and background responses further enhanced the data homogeneity. Finally, as the same set of samples was analyzed by both the IFN-É£ ELISpot and the ICS assays, a method comparison was performed. A clear correlation between the two methods was observed, but they cannot be considered interchangeable. In conclusion, proficiency tests show that a limited harmonization effort consisting of the introduction of SOPs and the use of the same in vitro stimulating antigens leads to a reduction of the interlaboratory variation of IFN-É£ ELISpot data and demonstrate that substantial improvements for the ICS assay are achieved as comparable laboratory datasets could be generated. Additional steps to further reduce the interlaboratory variation of ICS data can consist of standardized gating templates and detailed data reporting instructions as well as further efforts to harmonize reagent and instrument use.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Interferón gamma , Citocinas , Laboratorios , Coloración y Etiquetado , Ensayo de Immunospot Ligado a Enzimas/métodos
4.
Nat Med ; 29(1): 147-157, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228659

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine immunogenicity varies between individuals, and immune responses correlate with vaccine efficacy. Using data from 1,076 participants enrolled in ChAdOx1 nCov-19 vaccine efficacy trials in the United Kingdom, we found that inter-individual variation in normalized antibody responses against SARS-CoV-2 spike and its receptor-binding domain (RBD) at 28 days after first vaccination shows genome-wide significant association with major histocompatibility complex (MHC) class II alleles. The most statistically significant association with higher levels of anti-RBD antibody was HLA-DQB1*06 (P = 3.2 × 10-9), which we replicated in 1,677 additional vaccinees. Individuals carrying HLA-DQB1*06 alleles were less likely to experience PCR-confirmed breakthrough infection during the ancestral SARS-CoV-2 virus and subsequent Alpha variant waves compared to non-carriers (hazard ratio = 0.63, 0.42-0.93, P = 0.02). We identified a distinct spike-derived peptide that is predicted to bind differentially to HLA-DQB1*06 compared to other similar alleles, and we found evidence of increased spike-specific memory B cell responses in HLA-DQB1*06 carriers at 84 days after first vaccination. Our results demonstrate association of HLA type with Coronavirus Disease 2019 (COVID-19) vaccine antibody response and risk of breakthrough infection, with implications for future vaccine design and implementation.


Asunto(s)
Infección Irruptiva , Vacunas contra la COVID-19 , COVID-19 , Antígenos de Histocompatibilidad Clase II , Inmunogenicidad Vacunal , Humanos , Alelos , Anticuerpos Antivirales , ChAdOx1 nCoV-19 , COVID-19/genética , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , SARS-CoV-2 , Vacunación
5.
Sci Adv ; 8(14): eabl5209, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35385318

RESUMEN

To determine the potential for viral adaptation to T cell responses, we probed the full influenza virus genome by next-generation sequencing directly ex vivo from infected mice, in the context of an experimental T cell-based vaccine, an H5N1-based viral vectored vaccinia vaccine Wyeth/IL-15/5Flu, versus the current standard-of-care, seasonal inactivated influenza vaccine (IIV) and unvaccinated conditions. Wyeth/IL-15/5Flu vaccination was coincident with increased mutation incidence and frequency across the influenza genome; however, mutations were not enriched within T cell epitope regions, but high allele frequency mutations within conserved hemagglutinin stem regions and PB2 mammalian adaptive mutations arose. Depletion of CD4+ and CD8+ T cell subsets led to reduced frequency of mutants in vaccinated mice; therefore, vaccine-mediated T cell responses were important drivers of virus diversification. Our findings suggest that Wyeth/IL-15/5Flu does not generate T cell escape mutants but increases stochastic events for virus adaptation by stringent bottlenecks.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Genoma Viral , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/prevención & control , Interleucina-15/genética , Ratones , Mutación , Infecciones por Orthomyxoviridae , Prevalencia , Vacunación
6.
Viruses ; 13(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34578360

RESUMEN

Next generation influenza vaccines that target conserved epitopes are becoming a clinical reality but still have challenges to overcome. Universal next generation vaccines are considered a vital tool to combat future pandemic viruses and have the potential to vastly improve long-term protection against seasonal influenza viruses. Key vaccine strategies include HA-stem and T cell activating vaccines; however, they could have unintended effects for virus adaptation as they recognise the virus after cell entry and do not directly block infection. This may lead to immune pressure on residual viruses. The potential for immune escape is already evident, for both the HA stem and T cell epitopes, and mosaic approaches for pre-emptive immune priming may be needed to circumvent key variants. Live attenuated influenza vaccines have not been immunogenic enough to boost T cells in adults with established prior immunity. Therefore, viral vectors or peptide approaches are key to harnessing T cell responses. A plethora of viral vector vaccines and routes of administration may be needed for next generation vaccine strategies that require repeated long-term administration to overcome vector immunity and increase our arsenal against diverse influenza viruses.


Asunto(s)
Vacunas contra la Influenza/inmunología , Orthomyxoviridae/inmunología , Vacunas contra el Adenovirus , Animales , Anticuerpos Antivirales , Linfocitos T CD8-positivos/inmunología , Epítopos , Humanos , Gripe Humana , Infecciones por Orthomyxoviridae , Linfocitos T/inmunología , Vacunación , Vacunas Atenuadas/inmunología
7.
Front Med (Lausanne) ; 8: 793102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004764

RESUMEN

T cell responses are a key cornerstone to viral immunity to drive high-quality antibody responses, establishing memory for recall and for viral clearance. Inefficient recruitment of T cell responses plays a role in the development of severe COVID-19 and is also represented by reduced cellular responses in men, children, and diversity compared with other epitope-specific subsets and available T cell receptor diversity. SARS-CoV-2-specific T cell responses are elicited by multiple vaccine formats and augmented by prior infection for hybrid immunity. Epitope conservation is relatively well-maintained leading to T cell crossreactivity for variants of concern that have diminished serological responses.

8.
Front Immunol ; 9: 1479, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013557

RESUMEN

Influenza viruses circulate worldwide causing annual epidemics that have a substantial impact on public health. This is despite vaccines being in use for over 70 years and currently being administered to around 500 million people each year. Improvements in vaccine design are needed to increase the strength, breadth, and duration of immunity against diverse strains that circulate during regular epidemics, occasional pandemics, and from animal reservoirs. Universal vaccine strategies that target more conserved regions of the virus, such as the hemagglutinin (HA)-stalk, or recruit other cellular responses, such as T cells and NK cells, have the potential to provide broader immunity. Many pre-pandemic vaccines in clinical development do not utilize new vaccine platforms but use "tried and true" recombinant HA protein or inactivated virus strategies despite substantial leaps in fundamental research on universal vaccines. Significant hurdles exist for universal vaccine development from bench to bedside, so that promising preclinical data is not yet translating to human clinical trials. Few studies have assessed immune correlates derived from asymptomatic influenza virus infections, due to the scale of a study required to identity these cases. The realization and implementation of a universal influenza vaccine requires identification and standardization of set points of protective immune correlates, and consideration of dosage schedule to maximize vaccine uptake.

9.
Vaccine ; 36(29): 4198-4206, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29887326

RESUMEN

There is a diverse array of influenza viruses which circulate between different species, reassort and drift over time. Current seasonal influenza vaccines are ineffective in controlling these viruses. We have developed a novel universal vaccine which elicits robust T cell responses and protection against diverse influenza viruses in mouse and human models. Vaccine mediated protection was dependent on influenza-specific CD4+ T cells, whereby depletion of CD4+ T cells at either vaccination or challenge time points significantly reduced survival in mice. Vaccine memory CD4+ T cells were needed for early antibody production and CD8+ T cell recall responses. Furthermore, influenza-specific CD4+ T cells from vaccination manifested primarily Tfh and Th1 profiles with anti-viral cytokine production. The vaccine boosted H5-specific T cells from human PBMCs, specifically CD4+ and CD8+ T effector memory type, ensuring the vaccine was truly universal for its future application. These findings have implications for the development and optimization of T cell activating vaccines for universal immunity against influenza.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica , Vacunas contra la Influenza/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Femenino , Vacunas contra la Influenza/administración & dosificación , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA