Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(30): 20544-20549, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39016546

RESUMEN

The germanosilicide Na4-xGeySi16-y (0.4 ≤ x ≤ 1.1, 4.7 ≤ y ≤ 9.3) was synthesized under high-pressure, high-temperature conditions. The novel guest-host compound comprises a unique tetrel framework with dual channels housing sodium and smaller, empty (Si,Ge)9 units. The arrangement represents a new structure type with an overall structural topology that is closely related to a hypothetical carbon allotrope. Topological analysis of the structure revealed that the guest environment space cannot be tiled with singular polyhedra as in cage compounds (e.g., clathrates). The analysis of natural tilings provides a convenient method to unambiguously compare related tetrel-rich structures and can help elucidate new possible structural arrangements of intermetallic compounds.

2.
Nature ; 560(7716): 84-87, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30068951

RESUMEN

Geological pathways for the recycling of Earth's surface materials into the mantle are both driven and obscured by plate tectonics1-3. Gauging the extent of this recycling is difficult because subducted crustal components are often released at relatively shallow depths, below arc volcanoes4-7. The conspicuous existence of blue boron-bearing diamonds (type IIb)8,9 reveals that boron, an element abundant in the continental and oceanic crust, is present in certain diamond-forming fluids at mantle depths. However, both the provenance of the boron and the geological setting of diamond crystallization were unknown. Here we show that boron-bearing diamonds carry previously unrecognized mineral assemblages whose high-pressure precursors were stable in metamorphosed oceanic lithospheric slabs at depths reaching the lower mantle. We propose that some of the boron in seawater-serpentinized oceanic lithosphere is subducted into the deep mantle, where it is released with hydrous fluids that enable diamond growth10. Type IIb diamonds are thus among the deepest diamonds ever found and indicate a viable pathway for the deep-mantle recycling of crustal elements.

4.
Inorg Chem ; 57(4): 2002-2012, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29400457

RESUMEN

Single crystals of a complex Zintl compound with the composition Na4Ge13 were synthesized for the first time using a high-pressure/high-temperature approach. Single-crystal diffraction of synchrotron radiation revealed a hexagonal crystal structure with P6/m space group symmetry that is composed of a three-dimensional sp3 Ge framework punctuated by small and large channels along the crystallographic c axis. Na atoms are inside hexagonal prism-based Ge cages along the small channels, while the larger channels are occupied by layers of disordered sixfold Na rings, which are in turn filled by disordered [Ge4]4- tetrahedra. This compound is the same as "Na1-xGe3+z" reported previously, but the availability of single crystals allowed for more complete structural determination with a formula unit best described as Na4Ge12(Ge4)0.25. The compound is the first known example of a guest-host structure where discrete Zintl polyanions are confined inside the channels of a three-dimensional covalent framework. These features give rise to temperature-dependent disorder, as confirmed by first-principles calculations and physical properties measurements. The availability of single-crystal specimens allowed for measurement of the intrinsic low-temperature transport properties of this material and revealed its semiconductor behavior, which was corroborated by theoretical calculations.

5.
Nat Commun ; 8: 13909, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28045027

RESUMEN

The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other 'exotic' forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P43212) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verified using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations.

6.
Science ; 354(6318): 1403-1405, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27980206

RESUMEN

The redox state of Earth's convecting mantle, masked by the lithospheric plates and basaltic magmatism of plate tectonics, is a key unknown in the evolutionary history of our planet. Here we report that large, exceptional gem diamonds like the Cullinan, Constellation, and Koh-i-Noor carry direct evidence of crystallization from a redox-sensitive metallic liquid phase in the deep mantle. These sublithospheric diamonds contain inclusions of solidified iron-nickel-carbon-sulfur melt, accompanied by a thin fluid layer of methane ± hydrogen, and sometimes majoritic garnet or former calcium silicate perovskite. The metal-dominated mineral assemblages and reduced volatiles in large gem diamonds indicate formation under metal-saturated conditions. We verify previous predictions that Earth has highly reducing deep mantle regions capable of precipitating a metallic iron phase that contains dissolved carbon and hydrogen.

7.
Science ; 314(5806): 1731-5, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17170294

RESUMEN

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA