Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36850345

RESUMEN

The defence-in-depth (DiD) methodology is a defensive approach usually performed by network administrators to implement secure networks by layering and segmenting them. Typically, segmentation is implemented in the second layer using the standard virtual local area networks (VLANs) or private virtual local area networks (PVLANs). Although defence in depth is usually manageable in small networks, it is not easily scalable to larger environments. Software-defined networks (SDNs) are emerging technologies that can be very helpful when performing network segmentation in such environments. In this work, a corporate networking scenario using PVLANs is emulated in order to carry out a comparative performance analysis on defensive strategies regarding CPU and memory usage, communications delay, packet loss, and power consumption. To do so, a well-known PVLAN attack is executed using simulated attackers located within the corporate network. Then, two mitigation strategies are analysed and compared using the traditional approach involving access control lists (ACLs) and SDNs. The results show the operation of the two mitigation strategies under different network scenarios and demonstrate the better performance of the SDN approach in oversubscribed network designs.

2.
Sensors (Basel) ; 14(7): 12305-48, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25014096

RESUMEN

The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed.


Asunto(s)
Rayos Infrarrojos , Termografía/métodos , Animales , Humanos , Temperatura
3.
Sensors (Basel) ; 13(8): 10287-305, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23939585

RESUMEN

Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.


Asunto(s)
Calefacción/instrumentación , Calefacción/métodos , Ensayo de Materiales/instrumentación , Ensayo de Materiales/métodos , Termografía/instrumentación , Termografía/métodos , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Rayos Infrarrojos
4.
Sensors (Basel) ; 12(8): 10788-809, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23112629

RESUMEN

During the production of web materials such as plastic, textiles or metal, where there are rolls involved in the production process, periodically generated defects may occur. If one of these rolls has some kind of flaw, it can generate a defect on the material surface each time it completes a full turn. This can cause the generation of a large number of surface defects, greatly degrading the product quality. For this reason, it is necessary to have a system that can detect these situations as soon as possible. This paper presents a vision-based sensor for the early detection of this kind of defects. It can be adapted to be used in the inspection of any web material, even when the input data are very noisy. To assess its performance, the sensor system was used to detect periodical defects in hot steel strips. A total of 36 strips produced in ArcelorMittal Avilés factory were used for this purpose, 18 to determine the optimal configuration of the proposed sensor using a full-factorial experimental design and the other 18 to verify the validity of the results. Next, they were compared with those provided by a commercial system used worldwide, showing a clear improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA